
DiplomarbeitJustIeA Free Class File Veri�er for JavaTMEnver Haase<ehaase�inf.fu-berlin.de>September 2001

Freie Universität BerlinInstitut für InformatikTakustraÿe 9D-14195 Berlin



Revision $Id: JustIe.lyx 371539 2006-01-23 14:08:00Z turdt $



Erklärung1Hiermit versihere ih, die vorliegende Diplomarbeit selbständig und ohne fremdeHilfe verfaÿt zu haben. Es wurden nur die in der Bibliographie angegebenenQuellen benutzt.Danksagung2Während der Anfertigung dieser Diplomarbeit wurde ih von Prof. Dr. ElfriedeFehr und Dipl.-Inform. Markus Dahm betreut, wofür ih mih an dieser Stelleherzlih bedanke.Desweiteren bedanke ih mih bei Keith Seymour, der mir eine Reihe sprah-spezi�sher Verbesserungsvorshläge sandte.Autor3Enver HaaseGubener Straÿe 18D-10243 Berlin

1I delare that I wrote this Diplomarbeit ompletely on my own and without the help ofpersons not listed. All soures of information are listed in the Bibliography setion.2The reation of this Diplomarbeit paper was supported and supervised by Prof. Dr. ElfriedeFehr and Dipl.-Inform. Markus Dahm. Keith Seymour suggested a lot of language-relatedimprovements. Thank you.3Author 3



4



ContentsAbstrat 71 Introdution 91.1 Low Level Seurity as a Part of a Many-Tiered Strategy . . . . . 91.2 Why Another Veri�er? . . . . . . . . . . . . . . . . . . . . . . . . 101.2.1 Byteode Engineers Need JustIe . . . . . . . . . . . . . . 101.2.2 JustIe is Verbose . . . . . . . . . . . . . . . . . . . . . . 111.2.3 JustIe is Free . . . . . . . . . . . . . . . . . . . . . . . . 122 The Java Virtual Mahine 152.1 The ClassFile Struture . . . . . . . . . . . . . . . . . . . . . . . 152.1.1 Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . 172.1.2 Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . 192.1.3 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212.1.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212.2 The Exeution Engine . . . . . . . . . . . . . . . . . . . . . . . . 222.2.1 Loal Variables and the Operand Stak . . . . . . . . . . 222.2.2 Introdution to JVM Instrutions . . . . . . . . . . . . . . 243 Spei�ation of the Veri�ation Passes 293.1 Pass One . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293.2 Pass Two . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303.3 Pass Three . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313.3.1 Stati Constraints: Pass 3a . . . . . . . . . . . . . . . . . 323.3.2 Strutural Constraints: Pass 3b . . . . . . . . . . . . . . . 333.4 Pass Four . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414 Implementation of the Veri�ation Passes 434.1 Pass One . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434.2 Pass Two . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444.3 Pass Three . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454.3.1 Pass 3a . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454.3.2 Pass 3b . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464.4 Pass Four . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505 The Veri�ation API 515.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515.2 Some Example Code . . . . . . . . . . . . . . . . . . . . . . . . . 545.3 An Appliation Prototype . . . . . . . . . . . . . . . . . . . . . . 565



Contents6 Conlusion 596.1 What Was Ahieved . . . . . . . . . . . . . . . . . . . . . . . . . 596.2 What Could Not Be Ahieved . . . . . . . . . . . . . . . . . . . . 596.2.1 A Constraint Database . . . . . . . . . . . . . . . . . . . . 596.2.2 A Perfet Veri�er . . . . . . . . . . . . . . . . . . . . . . . 606.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616.3.1 Improvements to JustIe . . . . . . . . . . . . . . . . . . . 616.3.2 A Veri�er Proteting an Intranet . . . . . . . . . . . . . . 636.3.3 A Java Virtual Mahine Implementation Using JustIe . . 646.3.4 Drawing a Clear Line Between the Priniple of Informa-tion Hiding and Seurity . . . . . . . . . . . . . . . . . . . 647 Appendix 677.1 History of JustIe . . . . . . . . . . . . . . . . . . . . . . . . . . . 677.2 Flaws and Ambiguities Enountered . . . . . . . . . . . . . . . . 677.2.1 Flaws in the Java Virtual Mahine Spei�ation . . . . . . 677.2.2 Flaws in the Implementation of the Java Platform . . . . 697.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 727.3.1 The Kimera Projet . . . . . . . . . . . . . . . . . . . . . 727.3.2 The Veri�er by Stärk, Shmid and Börger . . . . . . . . . 727.4 The GNU General Publi Liense . . . . . . . . . . . . . . . . . . 72Glossary 79List Of Figures 81List Of Algorithms 83Bibliography 85

6



AbstratWhen Sun Mirosystems developed their Java Platform in the early 1990s, itwas originally designed for use in networked and embedded onsumer-eletronisappliations. But when they introdued it around 1995, it quikly beame usedin World Wide Web browser software. This was a way to bring interativeontent to demanding World Wide Web users. Sun took great are for therobustness of the platform: they planned to onnet embedded devies and letthem share data and ode over a network. Defetive devies transmitting baddata or unreliable network onnetions should not ause other devies to rash.This property made Java a good hoie for the ode-exeuting engine in WorldWide Web browsers: defetive server software or transmission errors would notause the Java Platform to rash; this is also true for purposely maliious odehidden on the Web. The ode-exeuting part of the Java Platform is alledThe Java Virtual Mahine (the JVM, for short). This exeution engine has toassure that the ode to be exeuted is well-behaved; it has to verify the ode.Therefore, the veri�er is an integral part of every JVM, but JustIe implementsa veri�er that is not integrated in a JVM. It was implemented using a softwarelibrary alled the Byte Code Engineering Library (the BCEL, for short) byMarkus Dahm [BCEL98, BCEL-WWW℄.The BCEL is intended to give users a onvenient mehanism to analyze, reateand manipulate (binary) Java lass �les. It o�ers an objet-oriented view ofotherwise raw data, inluding program ode. This library is, therefore, well-respeted espeially in the ompiler-writer ommunity whenever the JVM ishosen as the target mahine of the ompiler. Compiler bak-ends use theBCEL to produe ode for the JVM; and as new ompilers may be faulty, theymay produe bad ode. Testing these ompilers often is a di�ult task. Thegenerated ode should not only be semantially orret, but it also has to passthe veri�ers of all existing JVM implementations. Normally, a lot of humaninteration is required to run test ases. If the ode is rejeted by a veri�er,one often does not know why. Most veri�ers emit error messages whih do notidentify the o�ending instrution.JustIe presents an Appliation Programming Interfae (API) that may beused to automate the proedure skethed above. The onstraints imposed onlass �les are designed to be strit, therefore eleminating the need to run severalveri�ers on the generated ode. If ode passes the JustIe veri�er, it should passall other veri�ers. JustIe was also designed to output human-understandablemessages if the veri�ation of some ode fails.The appliation range of JustIe is not limited to ompiler bak-ends, in thesame sense as the BCEL is not only useful in this area. Transformations ofexisting ode and even generation of hand-rafted ode fall into its sope, too.As a side e�et, JustIe exports some data strutures suh as a ontrol �ow7



Abstratgraph; so its API may also be used for appliations targeting other problemareas suh as stati analyses of program ode.

8



1 Introdution1.1 Low Level Seurity as a Part of a Many-TieredStrategyThe Java programming language is well-known for its inherent seurity failitiessuh as the lak of pointer arithmeti or the need for memory alloation anddealloation. Lesser known is that this is only the top of an ieberg; the JavaPlatform implements a many-tiered seurity strategy [Yellin-WWW℄. It wasdesigned to run even untrusted ode � ode that possibly was not produedby a ompiler for the Java programming language, ode that may be orruptor ode that may have maliious intent (suh as stealing redit ard numberinformation from a hard disk drive). Three onsiderations were made:
• Untrusted ode ould damage hardware, software, or information on thehost mahine.
• It ould pass unauthorized information to anyone.
• It ould ause the host mahine to beome unusable through resouredepletion.While some seurity features suh as type-safety or the already-mentioned lakof pointer arithmeti of the Java programming language are a onvenient help forprogrammers, they an only help to redue programming errors. Of ourse thesefeatures do not help targeting the above problems. At a lower level, however,the Java Platform implements a so-alled sandbox: an area where ode an beexeuted but that has well-de�ned boundaries shielding the rest of the system.This is ahieved by means of a Java Virtual Mahine (JVM) emulation; the hostplatform does not diretly run untrusted ode, but a run-time system whih inturn runs the ode, restriting its aess to system resoures.A run-time system annot safely assume that untrusted ode is well-behaved.Code ould ause stak over�ows, stak underruns, or otherwise erroneous be-haviour that may bring the run-time system into an unde�ned state � possiblyallowing aess to proteted memory areas. One ould protet the run-time sys-tem by letting it predit the e�ets of every single instrution just in time whileatually exeuting it � but that would be too time-onsuming to be appliablein pratie.Therefore, good behaviour of program ode has to be enfored before it isatually exeuted � at least as far as this is possible. This is the lowest level ofJava seurity; there has to be an integral omponent in every JVM implementa-tion doing so ([VMSPEC2℄, page 420). This part of the JVM is alled the lass�le veri�er, yet better known as the byteode veri�er. Tehnially speaking,9



1 Introdutionbyteode veri�ation is only a part of lass �le veri�ation so lass �le veri�eris a more embraing term. JustIe implements a whole lass �le veri�er.

Figure 1.1: Conept of Class File Veri�ation1.2 Why Another Veri�er?As said before, every JVM implementation must ontain a lass �le veri�er, soit is reasonable to ask for the motivation behind reating just another lass �leveri�er � espeially one that is not part of a JVM implementation.1.2.1 Byteode Engineers Need JustIeShortly after the Java Platform was introdued, it was adopted with pleasurebeause of its inherent independene from operating systems and onrete hard-ware. Industry and eduational institutions with heterogenous networked om-puters ould now run the same software program on di�erent host mahines.Soon, many e�orts were put into researh and development of ompilers forprogramming languages other than the Java programming language that usethe JVM byteode as target.Nowadays, many other programming languages do have the JVM as its targetplatform; e.g. Fortran [f2j℄, Ada [AppMag-WWW℄, Sheme [KAWA-WWW℄ ormodi�ed Java language versions [GJ-WWW, PMG-WWW℄. A vast olletionof programming languages targeting the JVM an be found on the World WideWeb [PL4JVM℄.All these ompilers emit ode for the JVM � and so all these ompilers haveto pass the JVM's veri�er. Implementors of suh ompilers have to onsider the10



1.2 Why Another Veri�er?seurity related onstraints the JVM poses on the generated ode. It is di�ultto test if the emitted ode works on all JVM implementations, passing all JVMveri�er implementations. This is espeially problemati if not all of the projet'slass �les are loaded into the JVM during a test run, beause then they will notbe veri�ed.Having an opportunity to verify the transitive hull of referened lass �les(starting with some main lass �le) would be of help; JustIe o�ers it.The Byteode Engineering Library by Markus Dahm is often used as a om-piler bak-end to emit ode, but it is also used to hand-raft ode or to imple-ment byteode transformations. Beause JustIe works losely together withthe BCEL, users of the BCEL do not even have to leave their developmentenvironment to run the JustIe veri�er.To our knowledge, JustIe is the only implementation of a Java lass �leveri�er that was written in the Java programming language [langspe2℄ itself1.Beause of its Veri�ation API, it an be inluded in other software projetswritten in Java with more ease than any other veri�er implementation in adi�erent programming language ould provide.1.2.2 JustIe is VerboseUsually, when lasses pass the veri�er, it is mute. JustIe, in ontrast, distin-guishes between veri�ation results and messages. Messages are often warnings,but the reason for emitting suh a warning instead of a negative veri�ationresult is beause the lass �le does not pose a threat to the integrity of the JVMand thus does not have to be rejeted.When a veri�ation error ours and the lass �le is rejeted, even the built-inveri�ers usually produe some output saying so. As an example, onsider thefollowing veri�er run:ehaase�haneman:/home/ehaase > java CExeption in thread "main" java.lang.VerifyError:(lass: C, method: ttt signature: ()V)Reursive all to jsr entryOne might ask whih �jsr entry� (a branh target of a jsr or a jsr_w instru-tion) is alled reursively and whih instrutions may be responsible for this.Compare this to JustIe's output:[...℄Pass 3b, method number 0 ['publi stati void ttt()'℄:VERIFIED_REJECTEDConstraint violated in method 'publi stati void ttt()':Subroutine with loal variable '1', JSRs '[ 36: jsr[168℄(3) -> astore_1,8: jsr[168℄(3) -> astore_1, 30: jsr[168℄(3) -> astore_1, 23: jsr[168℄(3)1In a personal ommuniation, Robert Stärk told the author that there was a Java imple-mentation of the veri�er disussed in [JBook℄, written by Joahim Shmid using the BCEL.However, it is not released for publi use yet. 11



1 Introdution-> astore_1℄', RET ' 62: ret[169℄(2) 1' is alled by a subroutine whihuses the same loal variable index as itself; maybe even a reursiveall? JustIe's lean definition of a subroutine forbids both.[...℄Warnings:Pass 2: Attribute 'LineNumber(0, 4), LineNumber(0, 5), LineNumber(15,8), LineNumber(39, 11), LineNumber(47, 12), LineNumber(57, 13), LineNumber(64,15)' as an attribute of Code attribute '<CODE>' (method 'publi stativoid ttt()') will effetively be ignored and is only useful for debuggersand suh.Pass 2: Attribute 'LineNumber(0, 1), LineNumber(4, 1)' as an attributeof Code attribute '<CODE>' (method 'publi void <init>()') will effetivelybe ignored and is only useful for debuggers and suh.Pass 3a: LineNumberTable attribute 'LineNumber(0, 4), LineNumber(0,5), LineNumber(15, 8), LineNumber(39, 11), LineNumber(47, 12), LineNumber(57,13), LineNumber(64, 15)' refers to the same ode offset ('0') more thanone whih is violating the semantis [but is sometimes produed byIBM's 'jikes' ompiler℄.This output obviously has an answer to the above question; it shows the onlyjsr or jsr_w instrutions possibly responsible for a reursive all (whih is notallowed by the spei�ation of the JVM). For the speial �but lean� de�nitionof subroutines JustIe uses, please see setion 3.3.2.Note also the warning messages. Class �les that were not generated by Sun'sjava ompiler have a tendeny to look a little di�erent in some orner ases.IBM's jikes ompiler, for instane, produes LineNumberTable attributes (see2.1.1) whih look di�erent from those reated by java. Deteting suh di�er-enes is desirable beause future JVMs will have striter veri�ation heks2(whih most old java-ompiled lass �les will probably still pass). JustIeguides byteode engineers to reate lass �les that are indistinguishable fromthose reated by java to retain ompatibility with Sun's future JVM imple-mentations. Figure 1.2 graphially shows the relationship between lass �lesand the veri�er3.1.2.3 JustIe is FreeCurrently, there is no other free and omplete open soure veri�er availableknown to the author. You may have a look at the JVM's soure ode by SunMirosystems but you are not allowed to use the knowledge from that inspetionfor your own projets or even use their ode. JustIe is a lean-room implemen-tation: the author wrote JustIe by only reading the JavaTM Virtual MahineSpei�ation, Seond Edition [VMSPEC2℄ and omparing the behaviour of Jus-2The Solaris port of Sun's JVM, version 1.3.0_01, already has (some of) the striter heksbuilt in. You may enable them using the ommand-line option '-Xfuture'. Nothing aboutthis issue is mentioned in the spei�ation [VMSPEC2℄.3This is a simpliisti �gure; unfortunately, there are lass �les produed by the java om-piler that do not pass the veri�er. Please see setion 7.2.2 for more details.12



1.2 Why Another Veri�er?

Figure 1.2: Venn diagram showing the operating domain of the Java veri�er.tIe with the behaviour of ommerial implementations of Sun Mirosystemsand IBM Corporation.The open soure JVM implementation Ka�e [Ka�e-WWW℄, for example,does not have a omplete veri�er built in (although mandated by the JVMspei�ation).Kissme [kissme-WWW℄, another open soure JVM implementation, urrentlydoes not inlude any veri�er at all.The JVM implementations SableVM [SableVM-WWW℄ and Intel Corpora-tion's Open Runtime Platform [ORP-WWW℄ are platforms to experiment withperformane-enhanements. They are not intended to work as general-purposeJVMs so they do not need to implement veri�ers.Other open soure projets that ould make use of a free veri�er inlude theJava ompiler gj whih is part of the GNU ompiler olletion [GCC-WWW℄.JustIe is overed by the well-known and respeted software liense GNUGeneral Publi Liense (GPL); see setion 7.4. The author hopes other freesoftware will bene�t from it; from the JustIe software [JustIe℄ as well as fromthis paper desribing some of the inner workings of JustIe.

13



1 Introdution

14



2 The Java Virtual MahineThe Java Virtual Mahine (JVM) is an abstrat mahine spei�ed in [VMSPEC2℄.It has no knowledge about the Java programming language; but only of a ertainbinary �le format: the lass �le format. A lass �le ontains mahine instru-tions for the JVM (alled byteodes), a symbol table (alled onstant pool) andsome other anillary information.On method invoation, a loal stak frame is set up alled the exeution frame.It onsists of an operand stak and loal variables (whih may be ompared toregisters of traditional mahines).The instrutions in the ode arrays of lass �les are interpreted by the JVM.There are 212 legal instrutions; they have read-aess to the lass �le's on-stant pool and they an modify the operand stak and the loal variables intheir exeution frame. An invoked method reads its arguments from the loalvariables. Certain instrutions pass a return value to the invoking method.2.1 The ClassFile StrutureTraditionally, the JVM loads its programs from �les stored on �le systems ofhost mahines; these �les have names that end with �.lass�. It is possible tostore the �les in various other ways; a so-alled lass loader is then used totransform the �les internally to the desired, basi lass �le format. Therefore, itsu�es to explain the struture of traditional lass �les. Every lass �le onsistsof a single ClassFile struture as de�ned below. It de�nes a single lass asknown from the Java Programming Language [langspe2℄. The terms lass andlass �le may therefore be used interhangeably.As we will see, the ClassFile struture and its sub-strutures are de�nedfor upwards ompatibility, i.e., new struture de�nitions an be added to thespei�ation easily at a later time.ClassFile {u4 magi;u2 minor_version;u2 major_version;u2 onstant_pool_ount;p_info onstant_pool[onstant_pool_ount-1℄;u2 aess_flags;u2 this_lass;u2 super_lass;u2 interfaes_ount;u2 interfaes[interfaes_ount℄;u2 fields_ount; 15



2 The Java Virtual Mahine

Methods

Fields

Implemented interfaces

Access rights

Header

Constant pool

Class attributes

ConstantFieldref
"aVariable"
"[Ljava/lang/Object;"

"HelloWorld"

"java/io/PrintStream"

ConstantMethodRef
"println"
"(Ljava/lang/String;)V"

ConstantClass
"java/io/PrintStream"

getstatic     java.lang.System.out

invokevirtual java.io.PrintStream.println

ldc           "Hello, world"

HelloWorld.class

"Hello, world"
ConstantString

A lass �le onsists of onstants, �elds, methods, attributes and some anillaryinformation. This �gure was taken from [BCEL98℄, used with permission of theauthor. Figure 2.1: A Class File

16



2.1 The ClassFile Struturefield_info fields[fields_ount℄;u2 methods_ount;method_info methods[methods_ount℄;u2 attributes_ount;attribute_info attributes[attributes_ount℄;}You may read an 'u' as 'byte times'; e.g., 'u2' means 'two bytes in size'. We willnot delve into too muh detail here; the exat spei�ation of the entries arepublished by Sun [VMSPEC2℄. But one should note that besides some otherinformation, a lass �le basially de�nes attributes, onstants, �elds and meth-ods. Also, there are strong strutural onstraints imposed on lass �les. It is averi�er's task to validate them.2.1.1 AttributesThe general format of an attribute is de�ned below.attribute_info {u2 attribute_name_index;u4 attribute_length;u1 info[attribute_length℄;}An attribute is basially a typed data ontainer; its type is determined byits name. Every JVM is required to be silent about attributes of types it doesnot know. On the other hand, newly de�ned attributes are required not to im-pose a semantial hange on the lass �le. These attributes should be uniquelynamed; in fat, the pair (<attribute name>, <attribute length>) is requiredto be unique. This is guaranteed beause attributes not de�ned by Sun Mi-rosystems have to be named aording to the pakage naming sheme of theJava Programming Language [langspe2℄. Certain basi attributes are prede-�ned. They are used in the ClassFile (see setion 2.1), field_info (see setion2.1.3) and method_info (see setion 2.1.4). Also, attributes may be nested: theCode attribute referenes other attributes.Some examples for prede�ned attributes are listed below.The ConstantValue attributeThe ConstantValue attribute has the following format:ConstantValue_attribute {u2 attribute_name_index;u4 attribute_length;u2 onstantvalue_index;}
17



2 The Java Virtual MahineThe ConstantValue attribute represents the value of a onstant �eld. It has a�xed length: it ontains only a two-byte referene into the onstant pool. Onlyfield_info strutures (see setion 2.1.3) ontain this type of attribute.The Code AttributeThe Code attribute is used in the method_info (see setion 2.1.4) struture. Itrepresents the program ode of a method and it is de�ned as follows:Code_attribute {u2 attribute_name_index;u4 attribute_length;u2 max_stak;u2 max_loals;u4 ode_length;u1 ode[ode_length℄;u2 exeption_table_length;{ u2 start_p;u2 end_p;u2 handler_p;u2 ath_type;} exeption_table[exeption_table_length℄;u2 attributes_ount;attribute_info attributes[attributes_ount℄;}This is the most omplex of all prede�ned attributes. Every method that hasode (i.e., every non-native, non-abstrat method) must have suh an attribute.Note that the maximum stak depth and the number of loal variables for amethod invoation are de�ned here. This is important for the JVM when it re-ates an exeution frame (see setion 2.2.1) at the time the method is invoked.Also, the exeption handlers are de�ned here. Exeption handlers prevent anexeuting method from an abrupt ompletion if an exeptional situation ours.Code areas are said to be proteted against a lass of exeptional situations byan exeption handler1. Algorithm 1 shows an example for the use of exeptionhandlers. The exat meaning of the instrution opodes is not important here,the most ommon instrutions are explained later in this paper.The most important item, however, is the ode item. It de�nes the byteodeof this method; i.e., the JVM mahine instrutions.1The JVM losely re�ets the exeption mehanism of the Java programming language[langspe2℄. In the Java programming language, exeptions an be thrown, and they anbe aught expliitly. If an internal JVM error ours, the JVM also �impliitly� throws anexeption.18



2.1 The ClassFile StrutureAlgorithm 1 Use of Exeption Handlers[Let start_p and end_p protet the area A to B, inlusive. Let theath_type be �java.lang.NullPointerExeption�. Let the handler_ppoint to C.℄aonst_null ; push a NULL onto the operand stak.A: nop ; do nothingB: getfield Foo::bar ; dereferene NULL, ause NullPointerEx.return ; never exeutedC: nop ; this is exeuted: we ould handlenop ; the NullPointerExeptionreturn ; leave method (omplete normally)The LineNumberTable AttributeThe LineNumberTable attribute is de�ned as follows:LineNumberTable_attribute {u2 attribute_name_index;u4 attribute_length;u2 line_number_table_length;{ u2 start_p;u2 line_number;} line_number_table[line_number_table_length℄;}This attribute desribes the relation between soure ode line numbers andJVM instrution o�sets in the ode array of the Code_attribute; it an beused by debuggers to show the soure ode of urrently exeuting JVM mahineinstrutions. This attribute is usually a sub-attribute of a Code_attribute.Multiple LineNumberTable attributes may together represent a given line of asoure ode �le.2.1.2 ConstantsAll the onstants together form the onstant pool. The general p_info stru-ture is straightforward.p_info {u1 tag;u1 info[℄;}The 'tag' de�nes what 'info' follows it. Constants de�ne either onstant valuesor onstant symboli referenes, suh as referenes to other lasses. Currently,eleven onstant types are de�ned: Class, Fieldref, Methodref, Interfae-Methodref, String, Integer, Float, Long, Double, NameAndType and Utf8. 19



2 The Java Virtual MahineMost of the names are self-explanatory; the interested reader will �nd moreinformation in the spei�ation [VMSPEC2℄. Constants an be nested; this isdone by referring to the onstant pool index of the enlosed onstant.See the following examples.CONSTANT_Utf8_info {u1 tag;u2 length;u1 bytes[length℄;}A CONSTANT_Utf8 represents a onstant string. Suh a string is e.g. used todesribe names of methods, names of �elds, names of attributes, types of meth-ods or types of �elds. This string is enoded in UTF-8 format, a variant of theuniode harater set [Uniode℄. The tag for this type of onstant is simply thenumber 1, as de�ned in the Java Virtual Mahine Spei�ation, Seond Edition[VMSPEC2℄.CONSTANT_NameAndType_info {u1 tag;u2 name_index;u2 desriptor_index;}A Constant_NameAndType represents a name and a signature of a method,the tag is the number 12. Both lass_index and desriptor_index refer to aCONSTANT_Utf8.CONSTANT_InterfaeMethodref_info {u1 tag;u2 lass_index;u2 name_and_type_index;}A CONSTANT_InterfaeMethodref desribes a referene to a method de�nedin an interfae lass (see setion [langspe2℄ for an explanation of interfaes),the tag is number 11. The interfae lass is referened via a two-byte index intothe onstant pool. A Constant_Class is expeted there desribing a refereneto some lass �le. Every method has a name, zero or more argument typesand a return type; this is desribed in the CONSTANT_NameAndType that is alsoreferened via a two-byte onstant pool index.Note that there are impliit onstraints on the integrity of a lass �le: forexample, there must not be a CONSTANT_Integer where a CONSTANT_Utf8 isexpeted for a ertain entity. As another example, the names and the types ofmethods are enoded as strings in UTF-8 format [Uniode℄. They have to bewell-formed (aording to the spei�ation) to be valid.20



2.1 The ClassFile Struture2.1.3 FieldsEah �eld is desribed by a �eld_info struture as de�ned below.field_info {u2 aess_flags;u2 name_index;u2 desriptor_index;u2 attributes_ount;attribute_info attributes[attributes_ount℄;}A �eld has to be unique in a lass �le with respet to its name and desriptor2.We see that �elds referene onstants in the onstant pool via their onstantpool indies (suh as a CONSTANT_Utf8 desribing a �eld's name). An importantattribute used by �elds is the ConstantValue attribute (see setion 2.1.1).The aess_flags entry is a bit vetor that spei�es the aessibility andother properties3 of the �eld. E.g., a �eld with the ACC_PRIVATE4 bit set isnot aessible to other lasses. A �eld with the ACC_PUBLIC5 bit set is aessi-ble to any other lass. Any ombination with both the ACC_PRIVATE and theACC_PUBLIC bit set is not valid.The desriptor_index refers to a CONSTANT_Utf8 that symbolially enodesthe type of the �eld.2.1.4 MethodsEah method is desribed by a method_info struture as de�ned below.method_info {u2 aess_flags;u2 name_index;u2 desriptor_index;u2 attributes_ount;attribute_info attributes[attributes_ount℄;}As we an easily see, this is exatly the same struture we already know asfield_info (see setion 2.1.3). The di�erene lies in the meaning of the enlistedentities. For example, an aess �ag saying a �eld was volatile (non-aheable)would not make any sense if set in a method_info struture. Vie versa, an a-ess �ag saying the �oating point instrutions should work in �FP-strit� modewould be of no use if set in a field_info struture.2The desriptor of a �eld desribes its type. E.g., a desriptor of �[I� means �one-dimensionalarray of int�.3Often alled visibility.4Bit number 1.5Bit number 0. 21



2 The Java Virtual MahineMethods use a di�erent set of attributes than �elds; for example, the Constant-Value attribute (see setion 2.1.1) is of no use here. The Code and Exeptionsattributes frequently used by methods are of no use for �elds on the other hand.2.2 The Exeution EngineBefore a piee of ode (the ode of a �method�) is exeuted, an exeution frameis set up. It onsists of a program ounter (as known from traditional CPUs), aset of loal variables (similar to registers known from traditional CPUs), and anoperand stak. For eah new invoation instane of a method, a new exeutionframe is set up; it is destroyed on method termination.Beause a method may invoke other methods or itself reursively, there is aglobal method invoation stak.There also is a garbage-olleted heap shared among the exeution frames.This heap is used for objet alloation (see setion 2.2.2).The number of loal variables is not �xed. Every method de�nes how manyloal variables are used for its ode (up to 65536).Also note that there is no equivalent of a Proessor Status Word (PSW) inthe JVM. Traditionally, a PSW has �ags that are set impliitly during exeutionof the instrutions (suh as an over�ow or is-zero �ag). This is often used foronditional branhing. The JVM, however, uses the operand stak to store theresult of a omparison instrution expliitly. This result is often read from thestak by the JVM's onditional branhing instrutions.Should exeptional situations our (suh as an out-of-memory situation),the JVM does not lok up. Instead, an �exeption is thrown�; the urrentlyexeuting program is signalled. These signals an be proessed (�exeptionsan be aught�). If suh a signal is not handled by the urrently exeutingmethod, the JVM will searh a handler through the invoation hierarhy andstop exeution only if none was found.There is a thread mehanism in the JVM. Basially every thread reates anown method invoation stak (so there may be more than one ative exeutionframe at a time), but this feature is not important for the rest of this text.2.2.1 Loal Variables and the Operand StakThe method information in a lass �le de�nes how many loal variables areused on this method's invoation. It also de�nes the maximum operand staksize. Together, the loal variables array and the operand stak are alled theexeution frame.A single stak slot has a width of 32 bits, whih is also the width of a loalvariable. Therefore, values of types that oupy 64 bits (double and long) mustbe stored in two onseutive stak slots or loal variables.The veri�er takes are that the stak annot over�ow and that it annotunder�ow. Also, it takes are that instrutions may only aess loal variablesif they ontain a value of a known, orret type (see setion 3.3).22



2.2 The Exeution Engine

This �gure shows a method invoation stak. Method main was invoked by thesystem, main invoked foo, foo invoked bar, and bar invoked foo reursively.This �gure assumes main alloates one loal variable and one operand stak slot,foo alloates three loal variables and two operand stak slots and bar alloatesone loal variable and two operand stak slots.Figure 2.2: Method Invoation Stak

23



2 The Java Virtual Mahine2.2.2 Introdution to JVM InstrutionsThis setion is derived from setion 2.2 of [BCEL98℄, used with permission ofthe author.The JVM's instrution set urrently onsists of 212 instrutions, 44 opodesare marked as reserved and may be used for future extensions or intermediateoptimizations within the Virtual Mahine. The instrution set an be roughlygrouped as follows:Stak operations: Constants an be pushed onto the stak either by loadingthem from the onstant pool with the ld instrution or with speial�short-ut� instrutions where the operand is enoded into the instrutions,e.g., ionst_0 or bipush (push byte value).Arithmeti operations: The instrution set of the JVM distinguishes its operandtypes using di�erent instrutions to operate on values of spei� type.Arithmeti operations starting with i, for example, denote an integer op-eration. E.g., iadd that adds two integers and pushes the result bak onthe operand stak. The Java types boolean, byte, short, and har arehandled as integers by the JVM.Control �ow: There are branh instrutions like goto and if_impeq, whihompares two integers for equality. There is also a jsr6 (jump into sub-routine) and ret (return from subroutine) pair of instrutions. Exeptionsmay be thrown with the athrow instrution. Branh targets are oded aso�sets from the urrent byte ode position, i.e., they are oded with aninteger number.Load and store operations for loal variables like iload and istore. Thereare also array operations like iastore whih stores an integer value intoan array.Field aess: The value of an instane �eld may be retrieved with getfieldand written with putfield. For stati �elds, there are getstati andputstati ounterparts.Method invoation: Methods may either be alled via stati referenes withinvokestati or be bound virtually with the invokevirtual instrution.Super lass methods and private methods are invoked with invokespeial.Objet alloation: Class instanes are alloated with the new instrution, ar-rays of basi type like int[℄ with newarray, arrays of referenes likeString[℄[℄ with anewarray or multianewarray.Conversion and type heking: For stak operands of basi type there existasting operations like f2i whih onverts a �oat value into an inte-ger. The validity of a type ast may be heked with hekast and6There is a �wide� version of jsr alled jsr_w. The instrutions jsr/jsr_w and ret play inimportant role in hapter 3.3.24



2.2 The Exeution Enginethe instaneof operator an be diretly mapped to the equally namedinstrution.
Most instrutions have a �xed length, but there are also some variable-lengthinstrutions: In partiular, the lookupswith and tableswith instrutions,whih are often used by ompilers to implement the Java language swith()statements. Sine the number of ase lauses may vary, these instrutionsontain a variable number of statements.In a lass �le, the ode item in the Code attributes (whih in turn are at-tributes of method_info strutures), is a byte array in whih binary represen-tations of JVM instrutions are stored sequentially. This is also alled byteode.The JVM is a stak-based mahine. There are loal variables whih may beompared to registers, but most instrutions work on the operand stak. E.g.,the iadd instrution pops two integers from the operand stak and pushes theresult of the add operation on top of the stak.We will not list all of the instrutions here, sine these are explained in detailin the JVM spei�ation. However, you will �nd the most ommon instrutionsin table 2.1, ited with slight orretions and modi�ations from hapter 4 of[JNS℄.

Table 2.1: Type Pre�xes and the Most Common JVM InstrutionsPre�x Byteode typei Integerf Floating pointl Longd Double preision �oating pointb Bytes Short Charatera Objet referene 25



2 The Java Virtual MahineInstrution int long �oat double byte har short objet ref. Funtion?2 X Convert value of type<?> to harater?2d X X X Convert value of type<?> to double?2i X X X Convert value of type<?> to integer?2f X X X Convert value of type<?> to �oat?2l X X X Convert value of type<?> to long?2s X Convert value of type<?> to short?add X X X X Add two values of type<?>?aload X X X X X X X X Push an element of type<?> from an array ontothe stak?and X X Perform logial AND ontwo values of type <?>?astore X X X X X X X X Pop an element of type<?> from the stak andstore it in an array oftype <?>?mp X Compare two long val-ues. If they are equalpush 0, if the �rst isgreater push 1, else push-1?mpg X X Compare two IEEE val-ues of type <?> fromthe stak. If they areequal push 0, if the �rstis greater push 1, if theseond is greater push -1. If either is NaN (nota number) push 1?mpl X X Compare two IEEE val-ues of type <?> fromthe stak. If they areequal push 0, if the �rstis greater push 1, if theseond is greater push -1. If either is NaN (nota number) push -1?onst X X X X X Push a onstant value oftype <?> onto the stak?div X X X X Perform a division usingtwo values of type <?>and push the quotientonto the stak?in X Inrement the top of thestak (possibly by a neg-ative value)?ipush X X Push a sign extendedbyte or short value ontothe stak?load X X X X Push a value of type<?> from a loal vari-able onto the stak?mul X X X X Perform multipliationof two values of type<?>?neg X X X X Negate a value of type<?>?newarray X Create a new array ofobjet referenes?or X X Perform logial OR ontwo values of type <?>?rem X X X X Perform a division usingtwo values of type <?>and push the remainderonto the stak?return X X X X X Return a value of type<?> to the invokingmethod?shl X X Perform arithmeti shiftleft on a value of type<?>?shr X X Perform arithmeti shiftright on a value of type<?>?store X X X X X Pop a value of type <?>and store it into a loalvariable?sub X X X X Perform a subtrationusing two values of type<?>

26



2.2 The Exeution EngineThe opode names are mostly self-explanatory. In this paper, all byteode isommented to support the intuitive understanding. Algorithms 2 and 3 show anexample byteode taken from [BCEL98℄. It implements the well-known faultyfuntion. To understand this example, it is important to know that methodarguments are stored into the loal variables of a newly reated exeution frameupon method invoation.Algorithm 2Methed fa in a lass Faulty, Java programming language versionpubli stati final int fa(int n){return (n==0)?1:n*fa(n-1);}Algorithm 3 Method fa in a lass Faulty, Java byteode versionFaulty.fa (I)I0: iload_0 ; load argument onto stak1: ifne #8 ; non-zero? Then branh to 8.4: ionst_1 ; push onstant 1 onto stak5: goto #16 ; jump to 168: iload_0 ; load argument onto stak9: iload_0 ; load argument onto stak10: ionst_1 ; push onstant 1 onto stak11: isub ; subtrat the stak top from; the stak next-to-top whih beomes; the new stak top12: invokestati Faulty.fa (I)I ; all method fa reursively,; the new invoation; instane's argument is the stak top15: imul ; multiply the return value with the; argument given to the urrent; invoation instane16: ireturn ; return value on top of the; stak to the invoking method

27



2 The Java Virtual Mahine

28



3 Spei�ation of the Veri�ationPassesSun desribes a four-pass lass �le veri�er in The Java Virtual Mahine Spei-�ation, Seond Edition [VMSPEC2℄. It is not neessary to implement the ver-i�ation algorithms literally; and it is not possible anyway (see setion 3.3.2).However, implementing a veri�er with a multiple-pass arhiteture makes sense.It is a good thing to stay lose to the spei�ation beause it is well-knownthroughout the byteode engineering ommunity. Also, the boundaries betweenthe passes are not arbitrary. They are drawn to improve the performane ofthe veri�ers built into JVMs. For example, lasses are not veri�ed (ompletely)before they are atually used but they are loaded as soon as they are referenedin a ertain way. Most veri�ers use the traditional multiple-pass arhiteture,inluding Kimera [Kimera-WWW℄. Work in other diretions (for instane, theone-pass-arhiteture proposed by Fong [Fong-WWW℄) did not yield lasting re-sults.Pass one is basially about loading a lass �le into the JVM in a sane way andpass two veri�es that the loaded lass �le information is onsistent. Pass threeveri�es that the program ode is well-behaved; pass four veri�es things that on-eptually belong to pass three but are delayed to the run-time for performanereasons.Sometimes implementation details are disussed in this hapter. Wheneverthe spei�ation [VMSPEC2℄ was ambigous about some issue, the behaviour ofSun's JVM implementations was observed. The disussed details are part of thespei�ation of the JustIe veri�er.3.1 Pass OneThe �rst pass of the veri�er is only vaguely spei�ed. It is there to assure alass �le �has the basi format of a lass �le. The �rst four bytes mustontain the right magi number. All reognized attributes must beof the proper length. The lass �le must not be trunated or haveany extra bytes at the end. The onstant pool must not ontain anysuper�ially unreognizable information� ([VMSPEC2℄, page 141).The right magi number is 0xCAFEBABE ([VMSPEC2℄, page 94), whih iseasy to assure.It is not lear what �super�ially unreognizable information� exatly is, how-ever. If an attribute is not known to the JVM (or veri�er) implementation, ithas to be ignored � so this does not seem to be �super�ially unreognizableinformation�. Attributes that are not used annot be deteted in pass one. One29



3 Spei�ation of the Veri�ation Passeswould have to look at the byteodes to deide whether an attribute is used ornot (whih is not the domain of pass one, but of pass three).Observations show that most existing JVM veri�ers1 ignore �extra bytes atthe end� instead of rejeting lass �les bearing them.The other two statements speify veri�ation of the lass �le struture (andthe struture of the attributes therein). But this is also the domain of pass two!Only by inspeting the way the JVM loads, resolves and prepares lasses onewill understand the preise boundary between veri�ation passes one and two[Fong-WWW℄.'Being areful when loading a lass �le' is a good de�nition for pass one: thestruture of the �le to load is untrusted. Every impliit statement suh as �thisattribute has a length of 1234 bytes in total� is validated.Resolution is the transformation of a symboli referene to an atual referene� i.e., as long as there is only a symboli referene to an entity, this entity annotbe veri�ed at all beause it has not been loaded yet. Passes two and three areperformed during the resolution of a lass �le; while loading of the lass �le�pass one� must have been performed before. Resolution as suh is meaninglessto JustIe; the term is only used to draw the borders between the veri�ationpasses.3.2 Pass TwoThe heks performed in pass two enfore that the following onstraints aresatis�ed.
• Ensuring that �nal lasses are not sublassed and that �nal methods arenot overridden.
• Cheking that every lass (exept java.lang.Objet) has a diret super-lass.
• Ensuring that the onstant pool satis�es the doumented stati onstraints:for example, that eah CONSTANT_Class_info struture in the onstantpool ontains in its name_index item a valid onstant pool index for aCONSTANT_Utf8_info struture.
• Cheking that all �eld referenes and method referenes in the onstantpool have valid names, valid lasses, and a valid type desriptor.As Frank Yellin puts it [Yellin-WWW℄: pass two �performs all veri�ation thatan be performed without looking at the byteodes�. Also, �this pass doesnot atually hek to make sure that the given �eld or method really existsin the given lass; nor does it hek that the type signatures given refer toreal lasses.� Note that again resolution plays an important role to reate theboundary between two passes; here it is the boundary between pass two and1An example of a veri�er with this behaviour is the one implemented in Sun's Solaris portof the JVM, version 1.3.0_01.30



3.3 Pass Threepass three. Beause linking-time veri�ation enhanes the performane of theJVM, heks that basially belong to pass two are delayed to pass three. Thisleads to the obvious ontradition in the sentenes ited above.This performane enhanement has an ugly side e�et. Consider a refereneto a method m ontained in a lass �le C that does not exist. As long as thisreferene is not used, i.e., resolved, the absene of C annot be deteted. Suh areferene should in the author's opinion regarded as �super�ially unreognizableinformation� (see setion 3.1) and therefore be deteted.This pass has to verify the integrity of the las �le's data strutures as ex-plained in setion 2.1. As an example, onsider the LineNumberTable atribute.Sun did not speify there has to be exatly one LineNumberTable attribute (ornone at all) per method, so possibly there is more than one attribute of thatkind. This lax spei�ation is not neessary due to the fat that you an putall information in a single LineNumberTable_attribute2, but Sun did speifyit this way ([VMSPEC2℄, page 129).Veri�ers are requested to rejet lass �les with inonsistent information intheir attributes. However, here it may be that only by looking at all Line-NumberTable_attributes of a method, an inonsisteny an be deteted. Jus-tIe does so and rejets lass �les with inonsistent LineNumberTable informa-tion.Furthermore, it issues warnings if suh an attribute is deteted at all to dis-ourage its use (see setion 4.2). This is done beause of possible di�erentinterpretations of the spei�ation.It should be noted that the use of attributes raises a few more problems tolass �le veri�ation. A simple ase is the presene of an unknown attributethat may safely be ignored. It is expliitly stated that suh a lass �le must notbe rejeted. On the other hand, how should a veri�er reat if �for example� afield_info (see setion 2.1.3) struture enloses a Code_attribute? JustIewill issue a warning but not rejet the lass �le.3.3 Pass ThreePerforming pass three basially means verifying the byteode. There are so-alled �stati onstraints� on both the instrutions in the ode array and theiroperands. There are also so-alled �strutural onstraints�. The strutural on-straints speify onstraints on relationships between JVM instrutions, so somepeople (inluding the author) regard �strutural onstraints� as a misnomer;they should be alled �dynami onstraints�.Stati onstraints are easily enfored using very simple heks. Here is anexample for suh a hek: let there be a Code (see setion 2.1.1) attribute witha max_loals value of 2. Only loal variables number 0 and 1 may be aessedby the byteode in this Code attribute. For all instrutions aessing loalvariables, make sure they do not aess any other loal variable.2Any number of line_number_table array entries �ts niely in a singleLineNumberTable_attribute attribute. 31



3 Spei�ation of the Veri�ation PassesStrutural onstraints are enfored using an algorithm skethed by Sun; itimplements a symboli exeution of a method's ode, by means of data �owanalysis inluding type inferene ([VMSPEC2℄, pages 143-151). This algorithmis alled the data �ow analyzer. It is intuitively easy to understand, but it is hardto prove its orretness. The reason for that is the very weak spei�ation of itssubtleties; espeially subroutines, wide date types and objet initialization (seebelow). The general approah, however, is sound [BCV-Soundness℄. Here is anexample for a strutural onstraint enfored by this algorithm: during programexeution, at any given point in the program the operand stak is always of thesame height, no matter whih ode path was taken to reah that point.Pass three is the ore of the veri�er. Note that we will split this pass up intotwo passes, namely a pass verifying the stati onstraints and a pass verifyingthe strutural onstraints of a method's ode. We will all these passes �pass 3a�and �pass 3b�. In a way, they resemble pass one and pass two: the former passarefully parses an entity, while the latter pass performs additional veri�ation.By de�ning pass four, the spei�ation [VMSPEC2℄ impliitly exludes �er-tain tests that ould in priniple be performed in Pass 3�, beause they are�delayed until the �rst time the ode for the method is atually invoked�. Onthe other hand, veri�ers are allowed to perform pass four partially or ompletelyas a part of pass three. JustIe performs the pass four heks in pass 3a.3.3.1 Stati Constraints: Pass 3aSun gives examples of what the veri�er does before starting the data �ow ana-lyzer ([VMSPEC2℄, pages 143-144):
• Branhes must be within the bounds of the ode arrayfor the method.
• The targets of all ontrol-�ow instrutions are eah thestart of an instrution. In the ase of a wide instrutionthe wide opode is onsidered the start of the instru-tion, and the opode giving the operation modi�ed bythat wide instrution is not onsidered to start an in-strution. Branhes into the middle of an instrutionare disallowed.
• No instrution an aess or modify a loal variable atan index greater than or equal to the number of loalvariables that its method indiates it alloates.
• All referenes to the onstant pool must be an entryof the appropriate type. For example: the instrutionld an be used only for data of type int or �oat or forinstanes of lass String; the instrution getfield mustreferene a �eld.
• The ode does not end in the middle of an instrution.
• Exeution annot fall o� the end of the ode.
• For eah exeption handler, the starting and endingpoint of the ode proteted by the handler must be at32



3.3 Pass Threethe beginning of an instrution or, in the ase of theending point, immediately past the end of the ode.The starting point must be before the ending point.The exeption handler ode must start at a valid in-strution, and it may not start at an opode beingmodi�ed by the wide instrution.Most of these onstraints are either stati onstraints on instrutions or on theiroperands. A full list of onstraints an be found in the Java Virtual MahineSpei�ation, Seond Edition ([VMSPEC2℄, pages 133-137).The hek for exeution falling o� the end of the ode is an exeption: thisis a strutural onstraint and should therefore be performed in pass 3b. Sun'sveri�ers, however, rejet ode that has an unreahable nop at the end of the odearray. Obviously, they rejet the ode before performing data �ow analysis. Forthe sake of ompatibility, JustIe performs this hek in pass 3a.Note that the JVM's instrutions di�er in length. Some instrutions oupyonly one byte (suh as nop), others oupy three bytes (suh as goto). Branhinstrutions ould therefore target operands of instrutions. For example, line 1of algorithm 3 reads �1: ifne #8�. If it would read �1: ifne #7�, this odewas malformed. A speial ase is the instrution wide. This instrution takesanother instrution as its operand, so one ould be misguided into thinking thisembedded instrution was a valid target for branhes. It is not.The heks Sun delays until pass four are performed in pass 3a by JustIe.These are heks to ensure allowed and possible aess to a referened type,listed below.
• Is the type (lass or interfae) urrently under examination allowed toreferene the type3?
• Does the referened method or �eld exist in the given lass?
• Does the referened method or �eld have the indiated desriptor (signa-ture)?
• Does the method urrently under examination have aess to the refer-ened method or �eld?3.3.2 Strutural Constraints: Pass 3bThe strutural onstraints of JVM instrutions are enfored by a data �owanalyzer. This algorithm ensures the following onstraints ([VMSPEC2℄, page142).

• The operand stak is always the same size and ontainsthe same types of values.
• No loal variable is aessed unless it is known to on-tain a value of an appropriate type.
• Methods are invoked with the appropriate arguments.3Interfaes may ontain ode, this is normally used for stati initialization of final variables.33



3 Spei�ation of the Veri�ation Passes
• Fields are assigned only using values of appropriatetypes.
• All opodes have appropriate type arguments on theoperand stak and in the loal variable array.A full list of strutural onstraints an be found in The Java Virtual MahineSpei�ation, Seond Edition ([VMSPEC2℄, pages 137-139).Sun's Veri�ation AlgorithmSun spei�es the data �ow analyzer by giving an informal algorithm ([VMSPEC2℄,pages 144-146). This algorithm it ited here ompletely beause it is the veryore of the veri�er. Aording to this algorithm, every byteode instrution hasa �hanged� bit. Initially, only the �hanged� bit of the �rst instrution is set.1. Selet a virtual mahine instrution whose "hanged"bit is set. If no instrution remains whose "hanged"bit is set, the method has suessfully been veri�ed.Otherwise, turn o� the "hanged" bit of the seletedinstrution.2. Model the e�et of the instrution on the operandstak and loal variable array by doing the following:

• If the instrution uses values from the operand stak,ensure that there are a su�ient number of values onthe stak and that the top values on the stak are ofan appropriate type. Otherwise, veri�ation fails.
• If the instrution uses a loal variable, ensure thatthe spei�ed loal variable ontains a value of the ap-propriate type. Otherwise, veri�ation fails.
• If the instrution pushes values onto the operandstak, ensure that there is su�ient room on the operandstak for the new values. Add the indiated types tothe top of the modeled operand stak.
• If the instrution modi�es a loal variable, reordthat the loal variable now ontains the new type.3. Determine the instrutions that an follow the urrentinstrution. Suessor instrutions an be one of thefollowing:
• The next instrution, if the urrent instrution isnot an unonditional ontrol transfer instrution (forinstane goto, return, or athrow). Veri�ation fails ifit is possible to "fall o�" the last instrution of themethod.
• The target(s) of a onditional or unonditional branhor swith.
• Any exeption handlers for this instrution.4. Merge the state of the operand stak and loal vari-able array at the end of the exeution of the urrent34



3.3 Pass Threeinstrution into eah of the suessor instrutions. Inthe speial ase of ontrol transfer to an exeption han-dler, the operand stak is set to ontain a single objetof the exeption type indiated by the exeption han-dler information.
• If this is the �rst time the suessor instrution hasbeen visited, reord that the operand stak and loalvariable values alulated in steps 2 and 3 are the stateof the operand stak and loal variable array prior toexeuting the suessor instrution. Set the "hanged"bit for the suessor instrution.
• If the suessor instrution has been seen before,merge the operand stak and loal variable values al-ulated in steps 2 and 3 into the values already there.Set the "hanged" bit if there is any modi�ation tothe values.5. Continue at step 1.To merge two operand staks, the number of values on eahstak must be idential. The types of values on the staksmust also be idential, exept that di�erently typed refer-ene values may appear at orresponding plaes on the twostaks. In this ase, the merged operand stak ontains areferene to an instane of the �rst ommon superlass ofthe two types. Suh a referene type always exists beausethe type Objet is a superlass of all lass and interfaetypes. If the operand staks annot be merged, veri�ationof the method fails.To merge two loal variable array states, orrespondingpairs of loal variables are ompared. If the two types arenot idential, then unless both ontain referene values, theveri�er reords that the loal variable ontains an unusablevalue. If both of the pair of loal variables ontain referenevalues, the merged state ontains a referene to an instaneof the �rst ommon superlass of the two types.Certain instrutions and data types ompliate the data �ow analyzer, mostnotably the instrution ret (see setion 2.2.2). The algorithm above even usesa speial de�nition of merging for the ret instrution (see [VMSPEC2℄, page151). The ret instrution is parameterized with a value of type returnaddresswhih is read from a loal variable and used as a branhing target. The retinstrution is there to implement a (ontrol �ow) return from a subroutine.Reahability of InstrutionsFor the data �ow analysis algorithm, you need to know all the possible ontrol�ow suessors of every instrution, i.e., you need to build a ontrol �ow graph35



3 Spei�ation of the Veri�ation Passes(see below). Without the instrutions jsr4, jsr_w and ret this alulationwould be easy. But to alulate suessors of a ret instrution, you need aomplete ontrol �ow graph: you need to �nd out whih jsr or jsr_w and retpairs belong together. Therefore, a yle of self-dependeny is reated that hasto be broken somewhere. This is explained in detail below.This was also an issue that led to the de�nition of the term subroutine thatJustIe uses. This de�nition allows the predition of a ret instrution's targetwithout performing ontrol �ow analysis.SubroutinesSubroutines make the veri�ation algorithm extremely di�ult. They are harshlyunderspei�ed. Although �the Java virtual mahine has no guarantee that any�le it is asked to load was generated by that ompiler�, the subroutine spei�a-tion explains how java transforms �try/ath/finally� lauses into subrou-tines [VMSPEC2℄. Intuitively, one gets the idea that a subroutine starts withsome jump target of a jsr or jsr_w instrution and ends with a ret instrution.But the spei�ation fails to orretly speify what subroutines exatly are atmahine instrution level. Consider algorithm 4.Algorithm 4 Is This a Subroutine?00 jsr 03 ; Jump to �subroutine� at offset 03; push return; address 03 onto stak.03 pop ; Pop the return address off the stak.04 nop ; No operation.What is this? Is the NOP instrution part of a subroutine or not? Algorithm5 shows another example.Do we deal with one subroutine (whih is the ase if you de�ne subroutinesto start with a jsr or jsr_w's target) or are these two subroutines (whih is thease if you ount the ret instrutions and believe that there must be exatlyone ret per subroutine)?Reursive alls to subroutines are forbidden by the spei�ation; however,Sun's veri�er implementations are not onsequently deiding whih reursivealls to rejet5. This is a failure due to a missing de�nition of the term subrou-tine.While the �rst example passes Sun's veri�er, the seond example is rejeted.The exat de�nition of the term subroutine annot be deduted from ther be-haviour of Sun's veri�er.A new, lean spei�ation had to be de�ned. Suh a spei�ation an ofourse not be ompatible with the behaviour of Sun's veri�er in all orner ases.4Remember, a jsr or jsr_w instrution is an unonditional branh instrution that jumpsinto a subroutine. Usually a ret instrution leaves the subroutine.5This was experimentally found by the author and also published in [JBook℄.36



3.3 Pass ThreeAlgorithm 5 One or Two Subroutines?00 iload_0 ; Load a numerial 0 onto the stak.01 jsr 05 ; Jump to "subroutine" at offset 05; push return; address 04 onto stak.04 return ; Leave the method.05 dup ; Dupliate the stak's top.06 astore 0 ; Store the return address from the stak into; loal variable 0.07 astore 1 ; Store the return address from the stak into; loal variable 1.08 ifeq 12 ; If there is a 0 on top of the stak, jump to; offset 12.11 ret 0 ; Return to offset 4 (beause this is in loal; variable 0 here).12 nop ; No operation.13 ret 1 ; Return to offset 4 (beause this is in loal; variable 1 here).A Preise De�nition of the Term SubroutineBeause Sun �inappropriately� desribes how java reates subroutines, thede�nition presented here is based on the observation of java's behaviour. Thismakes the de�nition ompatible with a lot of existing ode, but without violatingthe validity of far-reahing onlusions earned by exploiting a lean de�nition6.
• Every instrution of a method is part of exatly one subroutine (or thetop-level).
• The �rst instrution of a subroutine is an astore N instrution that storesthe return address in loal variable number N.
• There must be exatly one ret instrution per subroutine. This instru-tion must work on the loal variable N ; i.e., it is a ret N instrution.
• Subroutines are not proteted by exeption handlers.
• No instrution that is part of a subroutine is the target of an exeptionhandler.
• Subroutines of a subroutine do not aess loal variable N. A subsubroutineof a subroutine is also onsidered a subroutine here, in a reursive sense.As we an see, a subroutine an be haraterized by its set of instrutions, themost important instrution being the target of some jsr or jsr_w instrutionthat is not part of the subroutine itself. Another important property is the loalvariable N the ret instrution is working on.6Unfortunately, in some rare ases, java produes ode that is inompatible with the on-straints related to our de�nition of subroutine. However, java also produes ode whihis inompatible with Sun's veri�er (see setion 7.2.2). 37



3 Spei�ation of the Veri�ation PassesThis way, we an make sure subroutines are properly nested, so that JustIewould rejet both the example byteodes in algorithms 4 and 5.The astore instrution mentioned above is so important beause there isno JVM instrution that an read values of a returnaddress type from loalvariables. After entering a subroutine, the astore instrution pops the returnaddress o� the operand stak and writes it into loal variable number N. There-fore we an be sure it will not be dupliated or deleted as in algorithms 4 and5. The onstraints onerning exeption handlers are de�ned to make sure thatwe an observe the ontrol �ow statially. If an exeption is thrown from withina subroutine, the method simply �ompletes abruptly� ([VMSPEC2℄, page 74).If we would allow subroutine instrutions to be proteted by exeption handlers,it would not be lear if the handling instrutions are part of the subroutine ornot.We an also derive subsubroutines of subroutines reursively by exploiting theproperly-nested property explained above.The Control Flow GraphA ontrol �ow graph is a direted graph with edges that represent possiblebranhes of ontrol �ow. Similarly, the nodes desribe groups of physiallyadjaent instrutions that have to be exeuted one after another � without anypossible ontrol �ow branh to another instrution but the physial suessor7.Figure 3.1 shows suh a ontrol �ow graph for algorithm 3, the implementationof the faulty funtion disussed earlier.

Figure 3.1: A Conventional Control Flow Graph7More information about ontrol �ow graphs an be found in [DragonBook℄.38



3.3 Pass ThreeThe JVM de�nes a sort of ontrol �ow orthogonal to the ommon exeution ofinstrutions, namely, the exeption mehanism. Beause every instrution ouldpossibly throw an exeption (say, a java.lang.VirtualMahineError) duringits exeution, the ontrol �ow graph alulated by JustIe always uses only oneinstrution per node. This also re�ets the original veri�ation algorithm givenby Sun Mirosystems. Figure 3.2 shows an example for suh a ontrol �owgraph.

Figure 3.2: A Control Flow Graph as Used by JustIeInstrution nodes are augmented with a data struture that represents thesimulated operand stak and the simulated loal variables array. When run-ning the ore veri�ation algorithm, these nodes are put into a queue whih isequivalent to tagging them with a hanged bit as Sun desribes8.Subroutines Revisited: Interplay With the Data Flow AnalyzerThere is another problem onerning subroutines. Normally, when merging thetype information of two simulated loal variables, the ommon type is reordedas unusable if the types di�er. This unusable value is then propagated to sub-sequent instrutions to prevent read aess.8As explained later, JustIe uses a queue that allows dupliates: this is a slight semantialhange. 39



3 Spei�ation of the Veri�ation PassesThis is not the ase with the suessors of the ret instrution. These sues-sors are physial suessors of some jsr or jsr_w instrutions.Subroutines are said to be polymorphi with respet to their loal variablesarrays. As an example, onsider algorithm 6. This algorithm shows legal JVMode. In line 11, loal variable 0 may ontain a value of the integer or the floattype; depending on the jsr instrution that entered the subroutine. Normally,this would ause the veri�er to mark loal variable 0 as unusable and propagatethis information. The suessors of the ret instrution are the instrutions inlines 5 and 10. However, a orret veri�er does not mark loal variable 0 asunusable for them, beause the loal variable 0 was not aessed or modi�ed inthe subroutine.Algorithm 6 Loal Variables are Polymorphi in Subroutines0 : ionst_0 ; load integer onstant 0 onto stak1 : istore 0 ; move it into loal variable 02 : jsr 11 ; enter subroutine5 : fonst 0.0 ; load float onstant 0.0 onto stak6 : fstore 0 ; move it into loal variable 07 : jsr 11 ; enter subroutine again10: return ; omplete method11: astore 1 ; Subroutine entry: move return address; into loal variable 112: nop ; do nothing13: ret 1 ; return from subroutineBasially, only the loal variables aessed in the alled subroutine (and thesubroutines alled from there, reursively) are merged with the orrespondingsuessor of a ret instrution. This means that in this speial ase, three souresare used to onstrut the merged array of loal variables type information (in-stead of only two): the jsr/jsr_w instrution, the ret instrution and the "old"type information of the ret instrution's target (whih is the physial suessorof the jsr/jsr_w instrution).One possibility to deal with this situation is inlining. For instane, the veri�erof the EletrialFire JVM [EF℄ uses this approah: instrution nodes of subrou-tines are dupliated for every alling jsr or jsr_w instrution. This approahis equivalent to the one skethed by Sun (see [VMSPEC2℄, page 151).JustIe uses a variant of this approah: instrution nodes are augmented withsets of loal variables arrays. The loal variables array used for merging a ret'stype information with the physial suessor of some jsr/jsr_w instrution iskeyed by that jsr/jsr_w instrution itself. This still implies a speial mergingmehanism for the ret instrution: only the physial suessor of one jsr/jsr_winstrution an be merged with the ret at a time, beause other jsr/jsr_winstrutions have possibly not been symbolially exeuted yet and thus bear notype information at the time of merging. In this senario, an instrution ina subroutine plays multiple roles; one for eah ourene of a jsr/jsr_w thatis alling the subroutine. The queue holding the instrutions to symboliallyexeute is therefore required to allow dupliates.40



3.4 Pass FourWide Data TypesThe types long and double use two onseutive loal variables if written toor read from a loal variables array. Similarly, they use two operand stakslots. This makes type veri�ation a bit more di�ult beause of subtle speialases. For example, when a method uses three loal variables at maximum (loalvariables 0, 1 and 2), the ode is not allowed to store a double value in loalvariable 2 (beause loal variable 3 would have to be oupied, too).Instane Initialization and Newly Created ObjetsIt would be di�ult to verify that a newly reated instane is initialized exatlyone, given all possible paths of exeution �ow in a method. Fortunately (froma veri�er implementor's view), Sun puts onstraints on objet initialization thatmath the behaviour of the veri�er � instead of putting sane onstraints onobjet initialization and atually verifying them.�A valid instrution sequene must not have an uninitialized objet on theoperand stak or in a loal variable during a bakwards branh [. . . ℄. Otherwise,a devious piee of ode might fool the veri�er into thinking it had initializeda lass instane when it had, in fat, initialized a lass instane reated in aprevious pass through a loop� ([VMSPEC2℄, page 148).3.4 Pass FourPass four performs �ertain tests that ould in priniple be performed in Pass3� ([VMSPEC2℄, page 142). These tests are usually delayed by JVM implemen-tations until run-time, beause they possibly trigger the loading of referenedlass �le de�nitions. This is a performane enhanement. However, �A Javavirtual mahine implementation is allowed to perform any or all of the Pass 4steps as part of Pass 3� ([VMSPEC2℄, page 143). The tests
• ensure that the referened method or �eld exists in the given lass
• hek that the referened method or �eld has the indiated desriptor(signature)
• hek that the urrently exeuting method has aess to the referenedmethod or �eld.JustIe has no run-time system and so the tests of pass four are performed inpass 3a.There are tests that have to be performed at run-time: for example, if anobjet referened by an objet referene on top of the operand stak implementsa ertain interfae or not [Fong2-WWW℄. These are not onsidered part of thepass four veri�ation.

41



3 Spei�ation of the Veri�ation Passes

42



4 Implementation of the Veri�ationPassesOasionally, the behaviour of other veri�er implementations was explained insetion 3. This is not a mistake; the Java Virtual Mahine Spei�ation, SeondEdition [VMSPEC2℄ is unfortunately not detailed enough to make a lean-roomimplementation of the JVM veri�er possible. Having a lose look at the be-haviour of existing veri�er implementations is sometimes neessary to interpretthe spei�ation orretly. For that reason, the behaviour of these implementa-tions is part of the spei�ation of JustIe whereever appropriate. Still, thereare some minor di�erenes in behaviour between JustIe and the traditionalJVM built-in veri�ers. These di�erenes were observed by using the traditionalveri�ers, not by inspeting their soure ode.JustIe is implemented in the Java programming language [langspe2℄ usingthe Byte Code Engineering Library [BCEL-WWW, BCEL98℄.4.1 Pass OneThe Byte Code Engineering Library (BCEL) presents an objet oriented viewof the lass �le struture. Therefore, an integral part of that library is parsinglass �les. JustIe uses the BCEL, so there was nothing left to do to loada lass �le in. Only minor hanges were made to the BCEL to make it moreverbose when exeptional situations our; i.e., when a garbled lass �le is loadedin. The BCEL uses Java's exeption mehanism to signal these situations;JustIe transforms this behaviour into the behaviour expeted by users of theVeri�ation API (see setion 5).Comparison to Sun's ImplementationThere does not seem to be any di�erene in behaviour between JustIe and thetraditional veri�ers. Still, this onvition is a result of blak box tests so itmight not be true in orner ases.Unknown attributes are ignored (though JustIe reords a warning message,where the traditional veri�ers don't).Trailing bytes at the end of the lass �le are ignored in both versions, on-traditing the spei�ation. This was neessary beause some Java run-timeenvironments are broken onerning the handling of .JAR arhive �les. Themehanism of loading lass �les from these arhives �les using the Java Plat-form's API is used by BCEL and probably by Sun's JVM, too. It is possiblethat this is the reason why Sun's veri�er itself does not enfore this onstraint.However, it does not really pose a threat to the integrity of any JVM known43



4 Implementation of the Veri�ation Passesto the author. There is no entry in the ClassFile struture (see setion 2.1)stating how long the lass �le is in its entirety, so a JVM implementor annotpossibly base a wrong deision on that.4.2 Pass TwoJustIe does perform �all veri�ation that an be performed without looking atthe byteodes� in pass two. For some reasons (like determining a valid anestorhierarhy of a lass), pass two of JustIe has to load referened lasses. Ofourse, this is done in a areful way: by pass-one-verifying them. If loading ofa referened lass should fail (i.e., veri�ation pass one fails on this lass), thereferening lass is rejeted by JustIe's pass two. Pass two of JustIe does notpass-two-verify any referened lasses.Also, JustIe's pass two emits a wealth of (warning) messages. Their target isto guide a byteode engineer to reate lass �les that are indistinguishable fromthose reated by Sun's java ompiler with no debugging output. For exam-ple, the use of LineNumberTable attributes (see setion 2.1.1) is disouraged,beause these atributes are only useful for debugging purposes. Still, they anbe the reason for a lass �le to be rejeted � to be on the safe side, �nishedappliations for the JVM should not be shipped with this debug information.Most of the heks of pass two were implemented using the Visitor program-ming pattern [DesignPatterns℄ provided by the BCEL's de.fub.byteode.lass�leAPI. This made it possible to have all the veri�ation split into several methodswithout having to de�ne arti�ial boundaries. For instane, a ConstantValueattribute is veri�ed in a method alled visitConstantValue(ConstantValue). Thisis a use of the objet oriented view of lass �les the BCEL o�ers.Comparison to Sun's ImplementationJustIe does not distinguish between run-time or link-time beause it was notintended to implement a JVM. Therefore, the notion of resolving (see setion3.2) is useless for JustIe. The author believes that the spei�ation of pass twogiven by Sun losely re�ets their implementation (or the other way around)1.Sometimes, there are ambiguities in the spei�ation. For instane, it issaid that �If the onstant pool of a lass or interfae refers to any lass orinterfae that is not a member of a pakage, its ClassFile struture musthave exatly one InnerClasses attribute in its attributes table�. A lass orinterfae that is �not member of a pakage� is better known as a nested lassor inner lass [InnerSpe℄, but this is something spei� to the Java language.The java ompiler reates multiple, often funny-named2 lass �les that areotherwise indistinguishable from normal lass �les.1The Java Virtual Mahine Spei�ation, Seond Edition, began as an internal projet do-umentation ([VMSPEC2℄, page xiv). Unfortunately, this an still be felt sometimes.2For anonymous lasses de�ned in a lass X the names are X$1, X$2 and so on. For a namedinner lass I de�ned in lass C the name is C$I. There is, however, no guarantee for that:this is only observed behaviour of java. Please see setion 7.2.1 for an example how thisbehaviour an lead to unexpeted problems.44



4.3 Pass ThreeTherefore, it is generally not possible to deide if suh an attribute is miss-ing; therefore Sun's implementation does not hek this onstraint. JustIe, inontrast, uses its warning mehanism if the name of a referened lass or inter-fae ould be a name of an inner lass reated by the java ompiler and theInnerClass attribute is missing.The sets of aepted or rejeted lass �les onerning pass two are equal usingboth Sun's implementation and JustIe, as exhaustive tests show. This an,however, not be proven beause one would need to analyze Sun's soure odefor that (whih is not intended: as already mentioned, JustIe is a lean-roomimplementation).4.3 Pass Three4.3.1 Pass 3aOne feature of the BCEL's de.fub.byteode.generi pakage is parsing ode at-tributes of methods and transforming them into so-alled InstrutionList ob-jets. Consequently, this feature is used to implement pass 3a; a few additionalheks have been implemented where BCEL is too �trustful� when parsing, i.e.,where BCEL relies on the orretness of the lass �le.Pass 3a onsists of the heking of stati onstraints on instrutions and stationstraints on operands of these instrutions. The suessful reation an anInstrutionList objet already implies that the stati onstraints on instru-tions are satis�ed. Similar to pass one, JustIe transforms the behaviour ofBCEL's exeption mehanism into the behaviour expeted by users of the Ver-i�ation API (see setion 5).The de.fub.byteode.generi API provided by BCEL o�ers a Visitor designpattern similar to the one of the de.fub.byteode.lass�le API. The tests forthe stati onstraints on operands of instrutions are implemented by using it.For example, the onstraints put on the operands of any iload instrution areveri�ed using a visitILOAD(ILOAD) method de�ned in a Visitor lass. ThisVisitor lass implements all the heks for integrity of all instrution's operands.Algorithm 7 shows the impementation of the visitILOAD(ILOAD) method.JustIe does not provide any run-time, so the tests of pass four (see setion3.4) are not delayed until run-time, but performed here.Comparison to Sun's ImplementationSun does not distinguish pass 3a and pass 3b. However, Sun's veri�ers also haveto ensure that the stati onstraints on instrutions are satis�ed before startingdata �ow analysis.This is obvious beause a data struture has to be built before the data �owanalyzer an be run; and this data struture has to be built arefully3 beausepasses one and two did not look at the byteodes before.JustIe does implement pass four heks in pass 3a whih Sun's veri�ers donot. Beause JustIe provides no run-time, the outome of a veri�ation failure3This atually means verifying the strutural integrity of the byteodes. 45



4 Implementation of the Veri�ation PassesAlgorithm 7 visitILOAD, Visitor ensuring stati onstraints on operands ofinstrutions/** Cheks if the onstraints of operands of the saidinstrution(s) are satisfied. */publi void visitILOAD(ILOAD o){int idx = o.getIndex();if (idx < 0){onstraintViolated(o, "Index '"+idx+"' must benon-negative.");}else{int maxminus1 = max_loals()-1;if (idx > maxminus1){onstraintViolated(o, "Index '"+idx+"' must not be greaterthan max_loals-1 '"+maxminus1+"'.");}}}is reported instantly. Traditional JVMs are required to silently delay the ationstriggered by that knowledge until run-time.4.3.2 Pass 3bJustIe aims at implementing Sun's data �ow analyzing algorithm as loselyas possible. First, a ontrol �ow graph is built � whih implies analyzing amethod's subroutine alling struture �rst.After that an implementation of the ore algorithm skethed by Sun Mirosys-tems is started. Veri�ation failure is internally signalled by the Java exeptionhandling mehanism whih is then transformed to math the Veri�ation API(see setion 5).SubroutinesSubroutines are modeled as instanes of the Subroutine interfae. They pro-vide the following methods (note that an InstrutionHandle is the BCEL'sprogramming handle to instrution objets and that X[℄ is the ommon Javanotation for array of X ):
• boolean ontains(InstrutionHandle)Returns true if and only if the given InstrutionHandle refers to aninstrution that is part of this subroutine,
• InstrutionHandle[℄ getInstrutions()Returns all instrutions that together form this subroutine,
• int[℄ getAessedLoalsIndies()Returns an array ontaining the indies of the loal variable slots aessed46



4.3 Pass Threeby this subroutine (read-aessed, write-aessed or both); loal variablesreferened by subroutines of this subroutine are not inluded,
• int[℄ getReursivelyAessedLoalsIndies()Returns an array ontaining the indies of the loal variable slots aessedby this subroutine (read-aessed, write-aessed or both); loal variablesreferened by subroutines of this subroutine are inluded,
• Subroutine[℄ subSubs()Returns the subroutines that are diretly alled from this subroutine,
• InstrutionHandle[℄ getEnteringJsrInstrutions()Returns all the JsrInstrutions that have the �rst instrution of this sub-routine as their target,
• InstrutionHandle getLeavingRET()Returns the one and only RET that leaves the subroutine.Together with information from a simple analysis of the possible ontrol �owtransfer of all the other instrutions but ret (see setion 3.3), a ontrol �owgraph is built.The Control Flow GraphThe ontrol �ow graph is a single instane with respet to a given method toverify. It is de�ned by providing aess to a set of ontexts of instrutions.These are modeled as instanes of the InstrutionContext interfae.These instanes enlose InstrutionHandle objets (whih represent an in-strution in the byteode), but they augment these objets with type informa-tion (a set of Frames, see below) as needed by the data �ow analysis algorithm.Also, a method alled getSuessors() is provided that alulates the possibleontrol �ow suessors of a given InstrutionContext instane.The most notable method de�ned in the InstrutionContext interfae is,however, the exeute(Frame, ArrayList, InstConstraintVisitor, ExeutionVisi-tor) method. This method is used to symbolially exeute a given instrution.The ArrayList argument is there to reord the subroutine alling hain. Theproperly-nested property of JustIe subroutines is exploited here: one an simplyount jsr/jsr_w and ret instrutions, similar to ounting opened and losedbraes in mathematial expressions.A Frame is JustIe's model of an exeution frame: a loal variables array modeltogether with an operand stak model. Every InstrutionContext instane isaugmented with suh a frame (to be preise, a set of suh frames as disussedin the spei�ation of subroutines, see setion 3.3).When frames are merged, the exeute(Frame, ArrayList, InstConstraintVisi-tor, ExeutionVisitor) method of some suessor InstrutionContext is alled.The Frame argument represents is the urrent type information of the prede-essing InstrutionContext. 47



4 Implementation of the Veri�ation PassesVisitorsAs in pass 3a, the Visitor pattern of the BCEL de.fub.byteode.generi API isalso used in pass 3b. While it was used to verify the stati onstraints of passthree in pass 3a, it is now used to verify the strutural onstraints.Before an instrution X is symbolially exeuted, the orresponding visitX(X)method is invoked on an InstConstraintVisitor instane. This instane isthere to verify all the preonditions are met to safely exeute the instrutionX. The InstConstraintVisitor lass therefore holds information about thepreonditions of all 212 valid Java byteode instrutions. A simpli�ed versionof this Visitor's visitILOAD(ILOAD) method is listed in algorithm 8.Similarly, the ExeutionVisitor lass ontains information about the be-haviour of every byteode instrution. An instane of this lass is used to modelthe e�et of the byteode instrutions on a Frame instane. Algorithm 9 showsthe visitILOAD(ILOAD) method of this Visitor.Algorithm 8 visitILOAD, Visitor ensuring the strutural (dynami) onstraintsof instrutionspubli void visitILOAD(ILOAD o){int produe = o.produeStak(pg);if ( produe + stak().slotsUsed() > stak().maxStak() ){onstraintViolated(o, "Cannot produe "+produe+" stakslots: only "+(stak().maxStak()-stak().slotsUsed())+" freestak slot(s) left.\nStak:\n"+stak());}[...℄}Algorithm 9 visitILOAD, Visitor symbolially exeuting instrutions/** Symbolially exeutes the orresponding Java Virtual Mahineinstrution. */publi void visitILOAD(ILOAD o){stak().push(Type.INT);}Comparison to Sun's ImplementationJustIe was originally aimed to be as ompatible to Sun's implementation aspossible. However, the unlear spei�ation prevents lean room implementa-tions (i.e., implementations whose programmers did not look into Sun's ode)from perfet ompatibility.Fortunately, it JustIe losely mathes Sun's implementation in its behaviour.As a test ase, the author veri�ed the transitive hull of the referened lass �lesstarting with the de.fub.byteode.veri�er.Veri�er lass. This set inludes most ofthe lasses of the Java 2 API supplied by Sun Mirosystems, i.e., a few hundredsof apparently orret lasses. A very small number of lass �les was rejeted by48



4.3 Pass ThreeAlgorithm 10 Simpli�ed Core Veri�ation Algorithm of Pass 3bpubli Veri�ationResult do_verify(Method m){ControlFlowGraph fg;if (m.hasCode())fg = new ControlFlowGraph(m)elsereturn Good_Veri�ationResult;Frame f = new Frame(); // loal variables and operand stakf.loalVariables().initialize(m.signature()); // put formal param types into lo. varsInstConstraintVisitor iv = new InstConstraintVisitor();ExeutionVisitor ev = new ExeutionVisitor();try{irulationPump(fg, f, iv, ev);}ath(Veri�ationFailure){return Bad_Veri�ationResult;}return Good_Veri�ationResult;}publi void irulationPump(Control�owGraph fg, Frame startFrame, In-stConstraintVisitor iv, ExeutionVisitor ev) throws Veri�ationFailure{Instrution start = fg.getFirstInstrution();/*Now merge the �rst frame (type info) into the �rst instrution.Empty list -> no instrutions have been exeuted before.*/start.exeute(startFrame, EmptyInstrutionList, iv, ev);/*Q is a Queue of pairs (Instrution, InstrutionList).*/Queue Q = EmptyQueue;/*Put the �rst instrution into the queue. This is similar to initializing a breadth �rstsearh.*/Q.add (start, EmptyInstrutionList);/*The main loop*/while (Q.isNotEmpty()){Instrution u = fst(Q.head());InstrutionList e = snd(Q.head());Q.removeHead();InstrutionList oldhain = e;InstrutionList newhain = e++[u℄;for (all suessors v of u){/*exeute returns true if type info has hanged. It may throw Veri�ationFailures.*/if (v.exeute(u.getOutFrame(oldhain), newhain,iv,ev))Q.add((v, newhain));}} 49



4 Implementation of the Veri�ation PassesJustIe beause of its di�erent spei�ation of subroutine onstraints. No otherrejets were enountered.Most lass �les that are found to be rejeted by Sun's veri�er implementationsare rejeted by JustIe, too.However, there are lass �le rejeted by Sun's veri�er implementations but notby JustIe. This should not our, but JustIe does not mimi the programmingerrors of Sun's veri�ers so far. Please see setion 7.2.2 for a disussion on aseleted inompatibility issue.An automated testing suite ould solidify the trust in JustIe's implementa-tion whih is not implemented yet. Please see setion 6.3.1 for a disussion onthat topi.4.4 Pass FourThe tests Sun's veri�ers perform during run-time but whih in priniple ouldbe performed in pass three are performed in pass 3a by JustIe.Comparison to Sun's ImplementationIt sems natural that Sun's veri�er implements the spei�ation by Sun. Ob-viously, JustIe has no run-time so JustIe has no pass four. The heks Sunperforms in pass four4 are performed in pass 3a by JustIe.

4Some JVMs expose implementation mistakes onerning pass four veri�ation. See setion7.2.2.50



5 The Veri�ation API5.1 IntrodutionThe Appliation Programming Interfae (API) of JustIe uses objet orienteddesign patterns [DesignPatterns℄. Readers not familiar with design patterns areenouraged to read at least about the Visitor, Singleton, Observer and Fatorypatterns.JustIe urrently onsists of four pakages: de.fub.byteode.veri�er, de.fub.byteode.veri�er.ex, de.fub.byteode.veri�er.statis and de.fub.byteode.veri�er.struturals. (We shall from now on omit the preeding de.fub.byteode.) Themost important of them is the veri�er pakage. The lass VerifierFatory anbe found here; this is the plae where all veri�ation starts. The VerifierFa-tory reates Verifier instanes; only the VerifierFatory an reate theseinstanes. A Verifier instane, in turn, has a one-to-one relationship with alass �le to verify, �its lass�. You an instrut a Verifier instane to run averi�ation pass on its lass yielding a VerifiationResult.All lass �les are fethed from the BCEL's lass �le repository, i.e., the lassRepository. The lass �les stored there are either put there by the user or theyare read from the �le system. For a byteode engineer who uses the BCEL thisis onvenient, beause one does not have to save the dynamially reated lass�le �rst in order to load it into JustIe.Pass 1 and pass 2 are related to the ClassFile struture as suh; passes 3aand 3b verify the byteode of a method. If a lass �le was reated using theBCEL, the BCEL user already knows how the JavaClass objet looks like1.The number of methods is known and the order of the methods in the lass �leis known.However, if this is not the ase, one usually does not know the number ofmethods in a lass �le or the order of these methods. To arefully extrat thisinformation from an untrusted lass �le, one should �rst let a pass-2-veri�ationrun on this �le. Afterwards, the information an be read from the JavaClassobjet the BCEL o�ers.Finally, one is able to supply the �method index� needed by veri�ation passes3a and 3b.Basially, after pass 2 has been run suessfully on a lass �le, one an safelyuse the methods in the BCEL's lass�le pakage on that lass �le. After pass3a has been run suessfully on a method, one an safely work on that methodusing the BCEL's generi pakage. After pass 3b has been run suessfully onall methods in a lass �le, this lass �le will not be rejeted by other veri�ers.Often, the run of a veri�ation pass implies reursively verifying other lass1A JavaClass objet represents a lass �le in the BCEL. 51



5 The Veri�ation API�les as well (beause they are somehow referened). Therefore, Veri�er in-stanes for these referened lasses are reated transparently. To be noti�edwhen suh an event ours, one an implement the Veri�erFatoryObserver in-terfae and let the Veri�erFatory register your implementation.

Figure 5.1: UML lass diagram of the Veri�ation APIA Veri�er reates instanes of PassVeri�ers. A PassVeri�er instane in hargeof performing some later veri�ation pass transparently reates PassVeri�er in-stanes for the preeding passes. Therefore, users of the Veri�ation API donot have to are about the order of veri�ation passes; i.e., earlier passes arerun always before later passes. All veri�ation results are ahed; this way anunsual order of alls to the doPassX() methods of the Veri�er lass does noteven waste omputing time.52



5.1 Introdution

firewall : Object aClassToVerify : Class theVF : VerifierFactory

aVerifier : Verifier

aP2V : Pass2Verifier

aP1V : Pass1Verifier

 : getName()

 : name

 : getVerifier(name)

 : create_if_not_cached

 : verifier_responsible_for_name

 : doPass2()

 : create_if_not_cached

 : verify()

 : doPass1()

 : create_if_not_cached

 : verify()

 : do_some_verifying_work

 : okay

 : okay

 : do_some_verifying_work

 : okay

 : okayVerificationResult

 : do_some_verifying_work

Pass One

Pass One

Pass Two

Single Pass2Verifier with

respect to the class to verify.

 : getName()

 : name

 : getVerifier(name)

 : create_if_not_cached

 : verifier_responsible_for_name

 : doPass2()

 : create_if_not_cached

 : verify()

 : doPass1()

 : create_if_not_cached

 : verify()

 : do_some_verifying_work

 : okay

 : okay

 : do_some_verifying_work

 : okay

 : okayVerificationResult

 : do_some_verifying_work

Single Pass1Verifier with

respect to the class to verify.

Figure 5.2: Informal UML sequene diagram showing the dependeny of veri�-ation pass two on veri�ation pass one.

53



5 The Veri�ation API5.2 Some Example CodeThe ode below shows an example of how to use the API provided by JustIe.It will verify the transitive hull of all referened lass �les. Normally, whileverifying a lass, referened lasses are reursively veri�ed performing earlierpasses. Veri�ers that are using pass 1 on their lass will not load in any otherlasses (see setion 3). Therefore, normally the transitive hull is not veri�edompletely (it usually does not make sense to verify it, though � it's done hereonly to give an example of what an be done).01 pakage de.fub.byteode.verifier;02 import de.fub.byteode.verifier.*;03 import de.fub.byteode.lassfile.*;04 import de.fub.byteode.*;05 /**06 * This lass has a main method implementing a demonstration program07 * of how to use the VerifierFatoryObserver. It transitively verifies08 * all lass files enountered; this may take up a lot of time and,09 * more notably, memory.10 *11 * �author Enver Haase12 */13 publi lass TransitiveHull implements VerifierFatoryObserver{14 /** Used for indentation. */15 private int indent = 0;16 /** Not publily instantiable. */17 private TransitiveHull(){ }1819 /* Implementing VerifierFatoryObserver. */20 publi void update(String lassname){21 for (int i=0; i<indent; i++) {22 System.out.print(" ");23 }24 System.out.println(lassname);25 indent += 1;26 Verifier v = VerifierFatory.getVerifier(lassname);27 VerifiationResult vr;28 vr = v.doPass1();29 if (vr != VerifiationResult.VR_OK)30 System.out.println("Pass 1:\n"+vr);31 vr = v.doPass2();32 if (vr != VerifiationResult.VR_OK)33 System.out.println("Pass 2:\n"+vr);34 if (vr == VerifiationResult.VR_OK){35 JavaClass j = Repository.lookupClass(v.getClassName());36 for (int i=0; i<j.getMethods().length; i++){37 vr = v.doPass3a(i);38 if (vr != VerifiationResult.VR_OK)39 System.out.println(v.getClassName()+", Pass 3a, method "+i+" ['"+j.getMethods()[i℄+"'℄:\n"+vr);40 vr = v.doPass3b(i);41 if (vr != VerifiationResult.VR_OK)42 System.out.println(v.getClassName()+", Pass 3b, method "+54



5.2 Some Example Codei+" ['"+j.getMethods()[i℄+"'℄:\n"+vr);43 }44 }45 indent -= 1;46 }4748 /**49 * This method implements a demonstration program50 * of how to use the VerifierFatoryObserver. It transitively51 * verifies all lass files enountered; this may take up a52 * lot of time and, more notably, memory.53 */54 publi stati void main(String[℄ args){55 if (args.length != 1){56 System.out.println("Need exatly one argument: The root lassto verify.");57 System.exit(1);58 }59 int dotlasspos = args[0℄.lastIndexOf(".lass");60 if (dotlasspos != -1)61 args[0℄ = args[0℄.substring(0,dotlasspos); args[0℄ =args[0℄.replae('/', '.');62 TransitiveHull th = new TransitiveHull();63 VerifierFatory.attah(th);64 VerifierFatory.getVerifier(args[0℄); // the observer is alledbak and does the atual trik.65 VerifierFatory.detah(th);66 }67 }First, an instane of the TransitiveHull lass is reated in line 62. Note that thislass implements the Veri�erFatoryObserver interfae.A referene to the newly reated instane is then passed to the Veri�erFatory in line63 by invoking its attah(Veri�erFatoryObserver) method. After registering the newobserver, the Veri�erFatory will all the instane's update(String) method (de�ned inlines 20-46) whenever a new Veri�er instane is reated.To trigger the veri�ation, a �rst Veri�er instane is fethed from the Veri�erFa-tory . Beause it is the very �rst Veri�er instane that is fethed, we know that ithas to be newly reated. This is done in line 64. This instane is not used in themain(String[℄) method; but its reation leads to a invoation of the update(String)method whih is de�ned in lines 20-46.There, the name of the lass to verify is printed (lines 21-25, line 45) and thefour veri�ation passes provided by JustIe are run. Note that one has to beareful not to try to verify a method that does not exist. JustIe would in thisase throw an InvalidMethodExeption. Therefore, after suessfully verifyingthat the struture of the lass �le to verify is well-formed (veri�ation up toand inluding pass two, lines 26-31), the number of methods is fethed from theorresponding JavaClass objet. (It is neessary to perform veri�ation passtwo on a lass �le to safely �nd out how many methods are de�ned in this lass�le.)After determining the number of methods, these methods are veri�ed per-55



5 The Veri�ation APIforming passes 3a and 3b on them (lines 32-44).By applying all veri�ation passes on some lass �le C, all lass �les refer-ened by C are found. Therefore, new Veri�er instanes are reated whih areresponsible for them. Beause of that, the update(String) method desribedabove is alled for every referened lass. This is a reursive loop; the programterminates when there is no referened lass left to be veri�ed.The example above is simple yet powerful. Admittedly, it is of limited use toverify lasses provided by the JVM vendor; therefore one would not normallyverify all the transitive hull of referened lass �les. However, a ommon use isverifying all lasses of a projet. Inserting a new line between line 20 and 21likeif (!(lassname.startsWith(�de.fub.byteode.verifier�)) return;would easily aomplish this goal if JustIe itself is the projet to verify and allthe projet's lass �les are referened by another lass �le in the projet.5.3 An Appliation PrototypeThe API of JustIe is used to o�er byteode engineers an opportunity to reatetheir own appliation programs. However, this dimension of on�gurability isoften not needed.JustIe omes with an appliation prototype whih provides an easy-to-useuser interfae. Figures 5.3 and 5.4 show sreen shots of this prototype builton the JustIe veri�er. The boxes to the right ontain veri�ation information.From the top to the bottom the boxes represent the veri�ation passes one, two,3a and 3b and the warning messages, respetively.

56



5.3 An Appliation Prototype

Figure 5.3: Veri�ation of the Mini.MiniParser lass �le. Veri�ation is passed,but JustIe suggests to remove unneessary (debug information) at-tributes.

57



5 The Veri�ation API

Figure 5.4: Veri�ation of the java.io.ObjetInputStream lass �le. Veri�ationis not passed beause of an unsatis�ed onstraint related to subrou-tines.

58



6 Conlusion6.1 What Was AhievedAbout a third of the development time of JustIe was spent examining the var-ious issues in onnetion with subroutines, i.e., issues onerning the byteodeinstrutions jsr, jsr_w and ret. This led to a new de�nition of the term sub-routine (setion 3.3.2)1, a new implementation of this veri�ation area (setion4.3.2) and a disussion on the arising inompatibilities (setions 4.3.2 and 7.2.2).Only a few di�erent veri�er implementations exist at all, and most of themare inomplete. JustIe is a omplete lass �le veri�er implementation inludinga byteode veri�er.The development of JustIe also led to improvements of the Byte Code En-gineering Library [BCEL-WWW, BCEL98℄. For instane, the returnaddressdata type was introdued there. It was modeled as a parameterized type. Also, aprogramming error was repaired that led to inonsistent treatment of exeptionhandlers in the BCEL.The ontrol �ow graph used by JustIe an also be used in other projets;the Veri�ation API provides aess to this data struture2. Only beause ofthe lari�ation of the subroutine issues ould suh a data struture be de�nedstatially.As an Open Soure projet, JustIe provides algorithms whih may be re-used in own projets. For example, every ompiler targeting the JVM has toalulate the maximum amount of stak memory used by a method. This is alsodone by JustIe.Finally, the need for a disussion on the meaning of Java seurity was iden-ti�ed (see setion 6.3.4).6.2 What Could Not Be Ahieved6.2.1 A Constraint DatabaseE�orts have been made to make JustIe veri�er highly on�gurable. Unfor-tunately, this ould not be aomplished by the author. For instane, it wasplanned to build a onstraint database whih would make it possible to turn onor o� single heks during veri�ation.While this might be possible in some ases, in general the onstraints ofthe lass �le veri�er are highly intertwined. For instane, without a well-formed1A request for lari�ation of the subroutine issue, sent to the eletroni mail addressjvm�java.sun.om was not answered.2A ControlFlowGraph instane an be reated by invoking the ControlFlowGraph(Method-Gen) onstrutor. A MethodGen is the BCEL's representation of a method. 59



6 Conlusiononstant pool one ould not run the data �ow analyzer in a sane way. As anotherexample, if a user preferred not to are about stak under�ow the veri�ationalgorithm would require ompliated user interation; i.e., the user would haveto deide what type to put onto the simulated operand stak just before it isread.One ould model the interdependenies of the various onstraints and allowonly groups of heks to be turned on or o� together. However, the authordoubts this ould be done in a way that is not prone to errors and that an bevalidated easily.This is also the reason why only one error is reported if veri�ation fails.Trying to ontinue veri�ation and �nd more onstraint violations leads only toonsequential veri�ation errors.JustIe implements ahing of veri�ation results. If a byteode engineerworks on a lass �le and needs to run JustIe several times against it, JustIewill ahe the veri�ation results of the reursively referened lass �les. Beauseof this, JustIe will be fast every subsequent time it is used to verify the lass.This minimizes the impat of the above shortomings.6.2.2 A Perfet Veri�erJustIe does not implement a perfet veri�er. Some lass �les with ode thatis safe to exeute are rejeted. Unfortunately, there has to be some degree ofunertainty onerning whih lass �les to rejet.The JVM performs initialization of lass �les after loading and verifying themwithout error. This inludes running the ode in the speial lass initializationmethod alled <linit> if it exists (see [VMSPEC2℄, page 53). For the orretoperation of the JVM it is important that this method does not ontain anin�nite loop. Verifying if this onstraint is true is similar to the Halting Problemand therefore not generally omputable [Unknowable℄. A veri�er has to omitthe hek and pass potentially unsafe lass �les.For another example, onsider algorithm 11 below.Algorithm 11 Rejeted lasspubli stati int always_true()Code(max_stak = 1, max_loals = 1, ode_length = 2)0: ionst_1 ; push onstant 1 onto stak1: ireturn ; return onstant 1 (�true�)publi stati void good_method()0: invokestati NewClass0.always_true ()I (18); Push �true� on stak3: ifne #10 ; If �true� is on stak jump to 106: pop ; Pop a value off the stak7: goto #6 ; jump to 610:return ; omplete methodThis ode is harmless, beause lines 6 and 7 an never be exeuted (it would60



6.3 Future Workunder�ow the operand stak in an in�nite loop). A lass �le with this ode isrejeted by JustIe and other veri�ers, beause the endless loop seems to be amaliious threat to the integrity of the JVM.We onlude that there annot be a perfet veri�er. All that ould be done isredue the degree of unertainty. For pratial purposes, i.e., to be ompatiblewith Sun's implementation, one should not even do that.There is also a simple proof showing a perfet veri�er does not exist in [JNS℄,hapter 6. It uses a diagonalization argument.6.3 Future WorkClass �le veri�ation is an integral omponent of Java seurity; and appliationprograms running on the Java Virtual Mahine are often used in seurity ritialareas. Several seurity holes and �aws have been found both in implementationsand the spei�ation of the Java lass �le veri�er sine it was introdued.Reently, the area has experiened a leap as a theoretially founded, soundand omplete Java environment was de�ned in [JBook℄. Possibly Sun's engineerswill use this work to improve Java and the Java veri�er. JustIe will have tohange to always keep lose to the industry standard.But JustIe itself an also be improved onerning pratiability, and newsoftware an be developed on top of the Veri�ation API.6.3.1 Improvements to JustIeIntrodution of Unique Identifers for Veri�ation Results and WarningMessagesCurrently, warning messages and veri�ation results are oneptually text-based.Only Veri�ationResult objets inlude a numeri value whih programs an useto deide if some lass veri�ation failed or not. A program like the prototypeintrodued in setion 5.3 an urrently not hide spei� messages from the userwithout parsing text. This limitation should be removed in the future by usingunique message numbers. This would also make translation of the messages intoother languages easier.A New Veri�ation StrategyThe ore veri�ation algorithm ited in setion 3.3.2 works by generalizing theknowledge about an objet type along the inheritane hierarhy.For instane, let there be an objet of type java.util.AbstratList on thesimulated stak of some modeled instrution. Let there be a loop so that thealgorithm has to visit that same instrution again, this time with an objet oftype java.util.AbstratSet in that same stak slot. The veri�er will om-pute the meet of the two types and reord that there is some objet of typejava.util.AbstratColletion in that stak slot.Remember that the instrution will be marked with a hanged bit until nosuh re-typing hange ours any more (JustIe will atually put it into a queue).61



6 ConlusionThis approah does not work very well when it omes to interfae types in-stead of lass �les. For example, the meet of a java.lang.Integer and ajava.lang.Double is a java.lang.Number beause java.lang.Number is the�rst ommon super lass. Both lasses also implement the java.lang.Com-parable interfae, but java.lang.Number does not. This information is lostwhen replaing the type information. However, urrent veri�ers do not rejetthe lass �les but make additional run-time heks neessary.Fong notied that this ould be the reason for the invokeinterfae opodeto be underspei�ed [Fong2-WWW℄ (also see setion 7.2.1).Stärk et al. suggest the use of sets of referene types instead ([JBook℄, pages229-231). This ould also be implemented in JustIe.Keeping up with Spei�ation Clari�ationsAs a lean-room implementation, JustIe depends on the learness of the spe-i�ation. Ambiguities ould lead to programming errors.Here we give one example: methods an be inherited in Java (for example,the method lone() is delared in the java.lang.Objet lass and thereforeinherited by every other lass).Let a lass A be a sublass of java.lang.Objet and let lass B be a sublass ofA. Also, let lass B override the de�nition of lone() with an own implementation.If java ompiles a Java program that invokes this method, it is either refer-ened as java.lang.Objet::lone() or as B::lone(). However, beause A inheritsthis method, the referene A::lone() is legal, too.In The Java Virtual Mahine Spei�ation, Seond Edition ([VMSPEC2℄,page 291) it is said that the referene must be a �symboli referene to the lassin whih the method is to be found�. Statially, the method lone() an of oursenot be found in lass A. One ould therefore think the referene A::lone() wasnot legal.In the meanwhile, Sun's engineer Gilad Braha lari�ed this issue: �Of ourse.This is disussed in JVMS 5.4.3.4, whih desribes interfae method resolution.I don't see the text on page 280 as ontraditing that. The symboli referenedoes give an interfae in whih the required method an be found, albeit asan inherited member. We ould try and reword it in a more preise way, toeliminate any misunderstandings.�Keeping up with lari�ations like this is an inevitable and on-going part ofthe development of JustIe.Keeping up with Java ExtensionsReently, Sun Mirosystems introdued a new attribute: the StakMap attributewhih is an attribute loal to the Code attribute (see setion 2.1.1). It wasspei�ed in [J2ME-CLDCS℄.It is there to provide �limited devies� that perform a one-pass veri�ationwith type information that would normally have to be inferred by the veri�er.It is not used by the veri�ation algorithm of JustIe now: it's urrently anunknown attribute to JustIe.62



6.3 Future WorkDeteting Loal Variable Aesses out of SopeThe LoalVariableTable attribute is a debug information attribute. Basially,it gives debuggers information about the original (soure ode) name and typeof a given loal variable.JustIe builds data strutures to warn if it detets ontraditing and overlap-ping areas; e.g., if some loal variable is anouned to arry an int value and afloat value at the same time.It ould also be interesting to warn if a loal variable is aessed for whih nodebug information exists. This is urrently not implemented.Extending the Veri�ation APIJustIe an easily be extended to run ertain analyses related to symboli byte-ode exeution.This inludes the omputation of the maximum number of used operand stakslots in a method or the omputation of unused loal variables in a method.These analyses are normally ostly to implement3, but they are a waste prod-ut of the veri�er's ore algorithm.A Veri�er Validation SuiteThe Kimera projet [Kimera-WWW℄ was the �rst known projet to implementa stand-alone Java veri�er. The people behind the projet had to test thebehaviour of their veri�er against the behaviour of the previous implementa-tions. Tests have been run in order to validate the Kimera veri�er. These testsrange from simply introduing random one-byte errors into lass �les and au-tomatially running Kimera against other veri�ers to elaborate researh work[Kimera-ProdGram, Kimera-TestingJVM℄.Currently, JustIe omes only with a very limited possibility of running testases against the native veri�er of the host mahine's JVM. The pioneering workof the Kimera projet ould be used to implement a validation suite for JustIe.6.3.2 A Veri�er Proteting an IntranetOften, Java Virtual Mahines are built into software used to browse the WorldWide Web suh as the KDE projet's Konqueror [KDE℄ or Mozilla.org's Mozilla[Mozilla℄ produts. Suh Internet tehnology is also often used in orporatenetworks. Corporate networks based on internet tehnology are alled intranets;these networks are normally proteted from the Internet by a so-alled �rewallomputer.This omputer's task is to provide aess to the internet only to privilegedemployees and �even more important� it bloks aess from unauthorized per-sons outside the intranet. The �rewall mahine is a single, bi-diretional pointof aess.3Often, heuristis are used suh as the method MethodGen.getMaxStak() in the BCEL[BCEL-WWW, BCEL98℄. 63



6 ConlusionHowever, normally web-browsing is onsidered harmless, so that the employ-ees an unrestritedly gather information, possibly visiting Java-enabled websites. The JVMs built into the browser software run software downloaded fromthe World Wide Web; while the the built-in veri�ers make sure that no danger-ous ode an be exeuted.Let us assume someone disovered a seurity hole in the veri�er implementa-tion or implementations that are used on the orporate network's workstations;let us also assume a path exists that would �x the problem.A system administrator would have to spent a lot of time to repair every singleveri�er. A heaper solution would be a veri�er built into the �rewall mahine;suh a veri�er an easily be implemented using JustIe and its Veri�ation API.6.3.3 A Java Virtual Mahine Implementation Using JustIeThe Java veri�er is originally a part of the Java Virtual Mahine. JustIeould also be part of a Java Virtual Mahine. JustIe's lass �les (the programode JustIe onsists of) ould simply be integrated into the ore Java lass�les. The exeution engine would then run JustIe without atually verifyingJustIe's lass �les themselves.For sienti� purposes one ould also implement a JVM in the Java pro-gramming language. Suh an implementation ould, for example, serve as adebugger.6.3.4 Drawing a Clear Line Between the Priniple of InformationHiding and SeurityThe priniple of information hiding has been (and still is!) a pratie of experi-ened programmers for many years. It is there to redue programming errors.In the Modula-2 programming language [M2℄ this is ahieved by expliitelydividing the program ode in de�nition modules and implementation modules.In older programming languages, suh as in the C programming language [C℄,this priniple is impliitely used, too. Basially this is ahieved by de�ninginterfaes that only desribe what the ode of a program module does. Theseinterfae �headers� are inluded into user ode instead of simply inluding theode itself.In objet-oriented programming languages suh as in Delphi [D3℄, C++ [CPP-D,CPP-E℄ or Java [langspe2℄, this priniple is re�ned to what is alled objetenapsulation. When a lass is de�ned, ertain key words suh as private,proteted, friend, publi, published set the aess rules for the members4of an objet of the given lass.Still, this re�ned tehnique does not have anything to do with seurity. It isonly there to aid programmers reate a reasonable design. If every piee of odeould manipulate every data struture, one would not know where to look fora programming error in the program soure ode. On the other hand, if some�eld is private in C++, one ould (with some knowledge about the ompiler4The members of a lass are its omponents: methods (program ode) and �elds (also alledattributes or variables).64



6.3 Future Workused) still referene and modify this �eld by pointer manipulation. In additionto that, a seond program like a debugger ould wath even the data of private�elds.However, when a Java program is ompiled into the language of the JVM,the information about the aess rights of the �elds and methods is inluded.This is where the priniple of information hiding is exploited to provide seurity.For example, the veri�er of the JVM has to make sure private �elds are neveraessed from a foreign piee of ode. But there are many implementationsof the JVM whih have seurity �aws suh as not honouring the aess rights.There are debuggers for JVM byteodes, too.When one thinks about seurity, one has to think of some enemy who ouldtry to harm the omputer or information stored on that omputer. From a JVMuser's point of view, the JVM is relatively seure. Even running untrusted odeannot do muh harm. Beause the seurity �aws in di�erent JVM implemen-tations di�er, they are probably not exploited most times.From a Java programmer's point of view, the JVM is not seure. Untrustedusers an do muh harm. For example, an online banking appliation storingimportant data in Java �elds (suh as aess information to the bank's databasemanagement system) is a threat to both the bank and its ustomers. Thisinformation ould easily be extrated by a maliious user.Another problem for Java programmers is the amount of symbolial informa-tion stored in lass �les. Today, it is easy to de-ompile a Java lass �le bak toJava language soure ode [JODE-WWW℄. This soure ode an then be readand analyzed by the user. Faing this problem, the �only safe ourse of ation isto assume that ALL Java ode will at some point be deompiled� ([JNS℄, page68).We onlude that the priniple of information hiding is not enough to providea degree of seurity that both �users and programmers� ould aept. Program-mers should not believe a good design makes a program seure.

65



6 Conlusion

66



7 Appendix7.1 History of JustIeThe author of JustIe one started to implement a lass �le deompiler likeJode [JODE-WWW℄. It soon beame lear that to suessfully implement it,one should exploit the �well-behaved� property of lass �les (whih essentiallymeans that they pass a veri�er, espeially pass three) [Krakatoa-WWW℄.JustIe was then developed to understand the �well-behaved� property of usuallass �les. It took muh longer to omplete than estimated beause of themany inherent bugs and ambiguities in The Java Virtual Mahine Spei�ation,Seond Edition [VMSPEC2℄.Its name starts with a J like Java does, referring to the tradition of givingJava-related software suh names. The seond part of the name, ICE, wasinspired by a novel by William Gibson [Neuromaner℄. It is an aronym forIntrusion Countermeasures Eletronis, something that is very muh like today's�rewall systems (see setion 6.3.2). He redits the invention of ICE to TomMaddox. The missing three letters were inserted to reate a word that makessense; in fat, hoosing the three-letter ombination ust resulted in the reationof a word with a double sense via bi-apitalization.JustIe was written using and extending the exellent Byte Code EngineeringLibrary [BCEL-WWW, BCEL98℄ by Markus Dahm. It really helped a lot andsped up development time.It was also �last but not least� written to earn its author a German Dipl.-Inform. degree whih one may ompare to a master degree.7.2 Flaws and Ambiguities EnounteredWhile designing, implementing and testing JustIe, a lot of interesting �awsand ambiguities were found in the spei�ation [VMSPEC2℄, the Java ompilerjava and the JVM java.7.2.1 Flaws in the Java Virtual Mahine Spei�ationThe Java Virtual Mahine Spei�ation, Seond Edition was derived from anin-house doument desribing the as-is implementation of Sun's genuine JavaVirtual Mahine ([VMSPEC2℄, page xiv). This sometimes leads to problems asthere are still a few points left where Sun's engineers forgot to desribe spei-�ation details to the publi, in error assuming they would be implementationdetails. Another soure of mistakes are ambiguities, inherent to natural lan-guages auh as English. 67



7 AppendixA Code Length Maximum of 65535 Bytes per MethodOn page 152, The Java Virtual Mahine Spei�ation, Seond Edition [VMSPEC2℄says that ode arrays may at most have a length of 65536 bytes beause ertainindies that point into the ode are only 16 bits of width. Page 134 states theode must have �less than� 65536 bytes. Therefore, the limitation stated onpage 152 is not helpful, but only onfusing.SubroutinesThe implementation of a provably orret veri�er is not possible beause ofthe ambiguities in the spei�ation [VMSPEC2℄. To reah this goal, variouse�orts have been made to desribe the veri�er and the JVM formally [Qian,StataAbadi, FreundMithell, JBook, JPaper℄. By restriting the ode javaprodues or by rede�ning the veri�er's behaviour, however, they are never one-to-one with the behaviour of the existing JVMs.Sun's spei�ation does not de�ne the term subroutine although it is used. In-stead, it is explained what byteode the Java ompiler generates when a finallylause appears in the Java language soure ode � this de�nitely does not belongthere, beause a veri�er must never assume the ode it veri�es was reated bySun's java ompiler.Clarifying this issue ould lead to an o�ial formal spei�ation.The Spei�ation Sometimes Satis�es the Veri�erFong [Fong2-WWW℄ found in 1997 that the invokeinterfae opode was un-derspei�ed in the �rst edition of the Java Virtual Mahine Spei�ation. Hemanaged to reate a lass �le that did not implement a spei� interfae butnevertheless used invokeinterfae to invoke a method. This lass �le passedthe veri�er (up to pass three), but the JVM found the problem during run-time(pass four). Fong onluded that the omission in the spei�ation was done onpurpose beause the implementation of the data �ow analyzer does not allowto hek this onstraint (please see setion 6.3.1 for a desription of how thislimitation ould be overome). However, in The Java Virtual Mahine Spei-�ation, Seond Edition [VMSPEC2℄, the spei�ation of invokeinterfae isorreted.Still, there is another ase where one would suspet the spei�ation de-sribes the behaviour of the veri�er: on pages 147 and 148 of the spei�ation[VMSPEC2℄, veri�ation of instane initialization methods and newly reatedobjets is explained. �A valid instrution sequene must not have an unini-tialized objet on the operand stak or in a loal variable during a bakwardsbranh, or in a loal variable in ode proteted by an exeption handler or afinally lause�. Note that the Java language keyword finally does not reallybelong here (Sun should speak of subroutines), but more important is that thisspei�ation is made to satisfy the veri�ation algorithm: �Otherwise, a deviouspiee of ode might fool the veri�er�.68



7.2 Flaws and Ambiguities EnounteredThe '$' Charater as a Valid Part of a Java NameBeause the java ompiler may reate lass �les with a '$' harater in theirnames as a result of Java soure �les de�ning inner lasses, this harater shouldno longer be a valid part of a Java name to avoid problems. I.e., the method in-voation java.lang.Charater.isJavaIdenti�erPart('$'); should return the valuefalse.7.2.2 Flaws in the Implementation of the Java PlatformSun's Veri�er Rejets Code Produed by Sun's CompilerSurprisingly, there are a number of examples in whih suh a thing happens.Another Problem With Subroutines In [JPaper℄, Stärk and Shmid give afew ode examples whih are ompiled orretly by the java ompiler but theresulting ode is rejeted by the traditional veri�ers. Algorithms 12 and 13 showone of their examples given in the Java programming language and the resultingoutput of the java ompiler.Algorithm 12 Stärk and Shmid's Rejeted Class, Java Language Versionlass Test1{int test(boolean b){int i;try{if (b) return 1;i=2;}finally {if (b) i = 3;}return i;}} If one tries to run this byteode using a JVM by IBM Corporation, the odeis rejeted1:ehaase�haneman:/home/ehaase > java Test1Exeption in thread "main" java.lang.VerifyError:(lass: Test1, method: test signature: (Z)I)Loalvariable 2 ontains wrong typeIn his letures, Stärk explains that the problem lies in the polymorphi na-ture of JVM subroutines [JLetures℄. Consider algorithm 13. In line 12, an intis put into loal variable number 2. The subroutine starting at line 27 is thenalled from line number 13. Note that this subroutine aesses the loal vari-able number 2. Finally, line 16 transfers ontrol to line 37 where the veri�ation1It is also rejeted by Sun's JVMs and the Kimera veri�er [Kimera-WWW℄. 69



7 Appendix

Algorithm 13 Stärk and Shmid's Rejeted Class, JVM Byteode Versionint test(boolean arg1)Code(max_stak = 1, max_loals = 6, ode_length = 39)0: iload_11: ifeq #114: ionst_15: istore_36: jsr #279: iload_310: ireturn11: ionst_212: istore_213: jsr #2716: goto #3719: astore %421: jsr #2724: aload %426: athrow27: astore %529: iload_130: ifeq #3533: ionst_334: istore_235: ret %537: iload_238: ireturn

70



7.2 Flaws and Ambiguities Enounteredproblem ours. An int should be read from loal variable number 2, but thisis marked unusable, beause it was aessed in the subroutine.However, the spei�ation ([VMSPEC2℄, page 151) states:
• For any loal variable that [. . . ℄ has been aessed or modi�ed by thesubroutine, use the type of the loal variable at the time of the ret.
• For any other loal variables, use the type of the loal variable before thejsr instrution.As one an see, in the above example loal variable number 2 holds an int datatype in both ases; there is no need to mark it unusable. This is the reasonwhy JustIe does not rejet the above byteode, thus being slightly inompatiblewith the behaviour of other veri�ers.The Maximum Method Length May Be Exeeded The java ompiler Suninluded in the Java Development Kit version 1.3.0_01 does not hek for themaximum method length of the ode array in a Code attribute (see setion2.1.1). A test �le ontaining 65000 lines like �System.out.println(�Test�);�was ompiled, but the resulting lass �le was rejeted by the veri�er.IBM Corporation's jikes ompiler does not even generate ode, but it loksup while ompiling the test �le.A Compiler Issue Related to Inner ClassesThe java ompiler has to name lass �les, even those of so-alled anonymouslasses [InnerSpe℄.This an ause problems: an inner lass I de�ned in a lass A will be ompiledinto a lass �le alled A$I.lass. A Java lass named A$I will also be ompiledinto a lass �le named A$I.lass overwriting the former lass �le. Beause Sundid not forbid the '$ ' harater as a legal part of a Java identi�er, the javaompiler should use a more sophistiated naming sheme.Pass Four is Only Partially ImplementedPass four de�nes run-time tests for onstraints that ould also be veri�ed in passthree; it is only for performane reasons that these tests are delayed. Insteadof having all the tests in one plae, they are unneessarily spread �making thevalidation of the veri�ation algorithm itself extremely di�ult� [Fong-WWW℄.Risking seurity for better performane is often regarded as a bad deision. Forinstane, in thejava version "1.3.0_01"Java(TM) 2 Runtime Environment, Standard Edition (build 1.3.0_01)Java HotSpot(TM) Client VM (build 1.3.0_01, mixed mode)Java Virtual Mahine, the pass four hek for aess rights was unintentionallyomitted. Sadly, other vendors liense Sun's ode and base their own implemen-tations on that ode. Therefore, mistakes are often inherited throughout theJVM vendors. The 71



7 Appendixjava version "1.3.0"Java(TM) 2 Runtime Environment, Standard Edition (build 1.3.0)Classi VM (build 1.3.0, J2RE 1.3.0 IBM build x130-20010626 (JITenabled: jit))Java Virtual Mahine by IBM Corporation, for example, exposes the samemistake.7.3 Related Work7.3.1 The Kimera ProjetIt is a misfortune that the Kimera [Kimera-WWW℄ projet losed the WorldWide Web presene and that the soure ode of the Kimera veri�er was neverreleased � it would have been quite interesting to see how that respeted veri�erimplementation deals with the problems arising onerning subroutine veri�a-tion.However, Kimera is the single other stand-alone veri�er besides JustIe the au-thor knows of. The people behind the projet found important seurity breahesin JVM implementations of various World Wide Web browsers.Also, they validated their veri�er implementation and published several pa-pers on JVM implementation veri�ation [Kimera-ProdGram, Kimera-TestingJVM℄.7.3.2 The Veri�er by Stärk, Shmid and BörgerIn [JBook℄, the authors de�ne the Java programming language and the Java vir-tual mahine formally using Abstrat State Mahines (ASM). This also inludesthe veri�er; its spei�ations have also been implemented in the funtional pro-gramming language AsmGofer [AsmGofer℄. This implementation is inluded onthe CD-ROM that aompanies the book.The �JBook veri�er � does not implement a omplete lass �le veri�er. Iturrently only implements the byteode veri�ation. Its input �les are not lass�les itself, but a textual representation of lass �les in so-alled Jasmin format[JVM℄. Therefore, this implementation is merely of theoretial interest.It does, however, implement a byteode veri�er that is founded on a solidtheory. This theory ould beome the standard for the interpretation of theJVM spei�ation [VMSPEC2℄. It ould even hange the spei�ation to removeits ambiguities.There is also an unreleased version of this veri�er implemented in the Javaprogramming language using the BCEL. This implementation, if it should everbe released, promises a lot as it ould ombine usability and a solid theory.7.4 The GNU General Publi LienseGNU GENERAL PUBLIC LICENSEVersion 2, June 1991Copyright (C) 1989, 1991 Free Software Foundation, In.59 Temple Plae, Suite 330, Boston, MA 02111-1307 USA72



7.4 The GNU General Publi LienseEveryone is permitted to opy and distribute verbatim opies of this liensedoument, but hanging it is not allowed.PreambleThe lienses for most software are designed to take away your freedom toshare and hange it. By ontrast, the GNU General Publi Liense is intendedto guarantee your freedom to share and hange free software�to make sure thesoftware is free for all its users. This General Publi Liense applies to mostof the Free Software Foundation's software and to any other program whoseauthors ommit to using it. (Some other Free Software Foundation software isovered by the GNU Library General Publi Liense instead.) You an applyit to your programs, too.When we speak of free software, we are referring tofreedom, not prie. Our General Publi Lienses are designed to make sure thatyou have the freedom to distribute opies of free software (and harge for thisservie if you wish), that you reeive soure ode or an get it if you want it,that you an hange the software or use piees of it in new free programs; andthat you know you an do these things.To protet your rights, we need to make restritions that forbid anyone todeny you these rights or to ask you to surrender the rights.These restritions translate to ertain responsibilities for you if you distributeopies of the software, or if you modify it. For example, if you distribute opiesof suh a program, whether gratis or for a fee, you must give the reipients allthe rights that you have. You must make sure that they, too, reeive or anget the soure ode. And you must show them these terms so they know theirrights.We protet your rights with two steps:(1) opyright the software, and(2) o�er you this liense whih gives you legal permission to opy, distributeand/or modify the software.Also, for eah author's protetion and ours, we want to make ertain thateveryone understands that there is no warranty for this free software. If thesoftware is modi�ed by someone else and passed on, we want its reipients toknow that what they have is not the original, so that any problems introduedby others will not re�et on the original authors' reputations.Finally, any free program is threatened onstantly by software patents. Wewish to avoid the danger that redistributors of a free program will individuallyobtain patent lienses, in e�et making the program proprietary. To preventthis, we have made it lear that any patent must be liensed for everyone's freeuse or not liensed at all.The preise terms and onditions for opying, distribution and modi�ationfollow.GNU GENERAL PUBLIC LICENSETERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MOD-IFICATION0. This Liense applies to any program or other work whih ontains a notieplaed by the opyright holder saying it may be distributed under the terms ofthis General Publi Liense. The "Program", below, refers to any suh programor work, and a "work based on the Program" means either the Program or73



7 Appendixany derivative work under opyright law: that is to say, a work ontainingthe Program or a portion of it, either verbatim or with modi�ations and/ortranslated into another language. (Hereinafter, translation is inluded withoutlimitation in the term "modi�ation".) Eah liensee is addressed as "you".Ativities other than opying, distribution and modi�ation are not overed bythis Liense; they are outside its sope. The at of running the Program isnot restrited, and the output from the Program is overed only if its ontentsonstitute a work based on the Program (independent of having been made byrunning the Program). Whether that is true depends on what the Programdoes.1. You may opy and distribute verbatim opies of the Program's soure odeas you reeive it, in any medium, provided that you onspiuously and appro-priately publish on eah opy an appropriate opyright notie and dislaimer ofwarranty; keep intat all the noties that refer to this Liense and to the abseneof any warranty; and give any other reipients of the Program a opy of thisLiense along with the Program. You may harge a fee for the physial at oftransferring a opy, and you may at your option o�er warranty protetion inexhange for a fee.2. You may modify your opy or opies of the Program or any portion ofit, thus forming a work based on the Program, and opy and distribute suhmodi�ations or work under the terms of Setion 1 above, provided that youalso meet all of these onditions:a) You must ause the modi�ed �les to arry prominent noties stating thatyou hanged the �les and the date of any hange.b) You must ause any work that you distribute or publish, that in whole or inpart ontains or is derived from the Program or any part thereof, to be liensedas a whole at no harge to all third parties under the terms of this Liense.) If the modi�ed program normally reads ommands interatively when run,you must ause it, when started running for suh interative use in the mostordinary way, to print or display an announement inluding an appropriateopyright notie and a notie that there is no warranty (or else, saying that youprovide a warranty) and that users may redistribute the program under theseonditions, and telling the user how to view a opy of this Liense. (Exep-tion: if the Program itself is interative but does not normally print suh anannounement, your work based on the Program is not required to print anannounement.) These requirements apply to the modi�ed work as a whole. Ifidenti�able setions of that work are not derived from the Program, and an bereasonably onsidered independent and separate works in themselves, then thisLiense, and its terms, do not apply to those setions when you distribute themas separate works. But when you distribute the same setions as part of a wholewhih is a work based on the Program, the distribution of the whole must beon the terms of this Liense, whose permissions for other liensees extend to theentire whole, and thus to eah and every part regardless of who wrote it. Thus,it is not the intent of this setion to laim rights or ontest your rights to workwritten entirely by you; rather, the intent is to exerise the right to ontrol thedistribution of derivative or olletive works based on the Program. In addition,mere aggregation of another work not based on the Program with the Program74



7.4 The GNU General Publi Liense(or with a work based on the Program) on a volume of a storage or distributionmedium does not bring the other work under the sope of this Liense.3. You may opy and distribute the Program (or a work based on it, underSetion 2) in objet ode or exeutable form under the terms of Setions 1 and2 above provided that you also do one of the following:a) Aompany it with the omplete orresponding mahine-readable soureode, whih must be distributed under the terms of Setions 1 and 2 above ona medium ustomarily used for software interhange; or,b) Aompany it with a written o�er, valid for at least three years, to giveany third party, for a harge no more than your ost of physially perform-ing soure distribution, a omplete mahine-readable opy of the orrespondingsoure ode, to be distributed under the terms of Setions 1 and 2 above on amedium ustomarily used for software interhange; or,) Aompany it with the information you reeived as to the o�er to distributeorresponding soure ode. (This alternative is allowed only for nonommerialdistribution and only if you reeived the program in objet ode or exeutableform with suh an o�er, in aord with Subsetion b above.) The soure odefor a work means the preferred form of the work for making modi�ations toit. For an exeutable work, omplete soure ode means all the soure ode forall modules it ontains, plus any assoiated interfae de�nition �les, plus thesripts used to ontrol ompilation and installation of the exeutable. However,as a speial exeption, the soure ode distributed need not inlude anythingthat is normally distributed (in either soure or binary form) with the majoromponents (ompiler, kernel, and so on) of the operating system on whihthe exeutable runs, unless that omponent itself aompanies the exeutable.If distribution of exeutable or objet ode is made by o�ering aess to opyfrom a designated plae, then o�ering equivalent aess to opy the soure odefrom the same plae ounts as distribution of the soure ode, even though thirdparties are not ompelled to opy the soure along with the objet ode.4. You may not opy, modify, subliense, or distribute the Program exept asexpressly provided under this Liense. Any attempt otherwise to opy, modify,subliense or distribute the Program is void, and will automatially terminateyour rights under this Liense. However, parties who have reeived opies, orrights, from you under this Liense will not have their lienses terminated solong as suh parties remain in full ompliane.5. You are not required to aept this Liense, sine you have not signedit. However, nothing else grants you permission to modify or distribute theProgram or its derivative works. These ations are prohibited by law if you donot aept this Liense. Therefore, by modifying or distributing the Program (orany work based on the Program), you indiate your aeptane of this Lienseto do so, and all its terms and onditions for opying, distributing or modifyingthe Program or works based on it.6. Eah time you redistribute the Program (or any work based on the Pro-gram), the reipient automatially reeives a liense from the original liensor toopy, distribute or modify the Program subjet to these terms and onditions.You may not impose any further restritions on the reipients' exerise of therights granted herein. You are not responsible for enforing ompliane by third75



7 Appendixparties to this Liense.7. If, as a onsequene of a ourt judgment or allegation of patent infringementor for any other reason (not limited to patent issues), onditions are imposedon you (whether by ourt order, agreement or otherwise) that ontradit theonditions of this Liense, they do not exuse you from the onditions of thisLiense. If you annot distribute so as to satisfy simultaneously your obligationsunder this Liense and any other pertinent obligations, then as a onsequeneyou may not distribute the Program at all. For example, if a patent liensewould not permit royalty-free redistribution of the Program by all those whoreeive opies diretly or indiretly through you, then the only way you ouldsatisfy both it and this Liense would be to refrain entirely from distributionof the Program. If any portion of this setion is held invalid or unenforeableunder any partiular irumstane, the balane of the setion is intended toapply and the setion as a whole is intended to apply in other irumstanes.It is not the purpose of this setion to indue you to infringe any patents orother property right laims or to ontest validity of any suh laims; this setionhas the sole purpose of proteting the integrity of the free software distributionsystem, whih is implemented by publi liense praties. Many people havemade generous ontributions to the wide range of software distributed throughthat system in reliane on onsistent appliation of that system; it is up to theauthor/donor to deide if he or she is willing to distribute software through anyother system and a liensee annot impose that hoie. This setion is intendedto make thoroughly lear what is believed to be a onsequene of the rest of thisLiense.8. If the distribution and/or use of the Program is restrited in ertain oun-tries either by patents or by opyrighted interfaes, the original opyright holderwho plaes the Program under this Liense may add an expliit geographialdistribution limitation exluding those ountries, so that distribution is permit-ted only in or among ountries not thus exluded. In suh ase, this Lienseinorporates the limitation as if written in the body of this Liense.9. The Free Software Foundation may publish revised and/or new versionsof the General Publi Liense from time to time. Suh new versions will besimilar in spirit to the present version, but may di�er in detail to address newproblems or onerns. Eah version is given a distinguishing version number. Ifthe Program spei�es a version number of this Liense whih applies to it and"any later version", you have the option of following the terms and onditionseither of that version or of any later version published by the Free SoftwareFoundation. If the Program does not speify a version number of this Liense,you may hoose any version ever published by the Free Software Foundation.10. If you wish to inorporate parts of the Program into other free programswhose distribution onditions are di�erent, write to the author to ask for per-mission. For software whih is opyrighted by the Free Software Foundation,write to the Free Software Foundation; we sometimes make exeptions for this.Our deision will be guided by the two goals of preserving the free status ofall derivatives of our free software and of promoting the sharing and reuse ofsoftware generally.NO WARRANTY76



7.4 The GNU General Publi Liense11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THEREIS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMIT-TED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED INWRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PRO-VIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND,EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITEDTO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-NESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THEQUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.SHOULD THE PROGRAMPROVE DEFECTIVE, YOU ASSUME THE COSTOF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW ORAGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANYOTHER PARTYWHOMAYMODIFY AND/ORREDISTRIBUTE THE PRO-GRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUEN-TIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USETHE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATAORDATA BEING RENDERED INACCURATEOR LOSSES SUSTAINED BYYOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OP-ERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OROTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCHDAMAGES.END OF TERMS AND CONDITIONS

77



7 Appendix

78



GlossaryAess modi�ers In the Java programming language, the use of the keywordsprivate, proteted, publi (or the use of no keyword) de�nes the aessrights for data or program ode (also alled visibility). This informationis also used by the JVM: it is part of the lass �les. The most importantmodi�er is private whih is used to globally deny aess to a �eld ormethod.Aess rights Aess rights are granted or denied by the use of ⊲aess modi-�ers.API Appliations Programming Interfae. Suh an interfae is used to inludefuntionality of foreign program modules (often Java ⊲pakages) into ownprograms.Debugger A program used to investigate the behaviour of another program.Often used to �nd and remove programming errors, so-alled bugs.Desriptor A symboli desription of type information. In the JVM's lass �les,strings in UTF-8 format [Uniode℄ are used to desribe type information.Field A member of a Java objet or lass, also alled variable or attribute.Method A member of a Java objet or lass. Methods inlude program odeor they are abstrat representatives for program ode. A method an beompared to a funtion in programming languages like C or Pasal.Opode Operation Code. This denotes an instrution in an assembly-like om-puter language; to some people it means its binary representation.Pakage A pakage is an entity used in both the Java programming languageand the Java Virtual Mahine de�nition. It is used to group lasses thatin the eyes of the programmer belong together. Pakage de�nitions haveimpat on ⊲aess rights granted to other lasses.Signature A method has a (possibly empty) set of arguments it expets, and ithas a return type (possibly the void type). The type information of thearguments and the return type together is alled signature. A signaturean be expressed in terms of a ⊲desriptor.Type A �eld or a method argument has a type suh as int or String. In theJVM's ontext, all values are typed. Types an be expressed in terms ofa ⊲desriptor.
79



Glossary

80



List of Figures1.1 Conept of Class File Veri�ation . . . . . . . . . . . . . . . . . . 101.2 Venn diagram showing the operating domain of the Java veri�er. 132.1 A Class File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162.2 Method Invoation Stak . . . . . . . . . . . . . . . . . . . . . . . 233.1 A Conventional Control Flow Graph . . . . . . . . . . . . . . . . 383.2 A Control Flow Graph as Used by JustIe . . . . . . . . . . . . . 395.1 UML lass diagram of the Veri�ation API . . . . . . . . . . . . 525.2 Informal UML sequene diagram showing the dependeny of ver-i�ation pass two on veri�ation pass one. . . . . . . . . . . . . . 535.3 Veri�ation of the Mini.MiniParser lass �le. Veri�ation is passed,but JustIe suggests to remove unneessary (debug information)attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575.4 Veri�ation of the java.io.ObjetInputStream lass �le. Veri�a-tion is not passed beause of an unsatis�ed onstraint related tosubroutines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

81



List of Figures

82



Algorithmenverzeihnis1 Use of Exeption Handlers . . . . . . . . . . . . . . . . . . . . . . 192 Methed fa in a lass Faulty, Java programming language version 273 Method fa in a lass Faulty, Java byteode version . . . . . . . 274 Is This a Subroutine? . . . . . . . . . . . . . . . . . . . . . . . . . 365 One or Two Subroutines? . . . . . . . . . . . . . . . . . . . . . . 376 Loal Variables are Polymorphi in Subroutines . . . . . . . . . . 407 visitILOAD, Visitor ensuring stati onstraints on operands ofinstrutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468 visitILOAD, Visitor ensuring the strutural (dynami) onstraintsof instrutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489 visitILOAD, Visitor symbolially exeuting instrutions . . . . . 4810 Simpli�ed Core Veri�ation Algorithm of Pass 3b . . . . . . . . . 4911 Rejeted lass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6012 Stärk and Shmid's Rejeted Class, Java Language Version . . . 6913 Stärk and Shmid's Rejeted Class, JVM Byteode Version . . . 70

83



Algorithmenverzeihnis

84



Bibliography[AppMag-WWW℄ AverStar's AppletMagi(tm): Ada for the Java VirtualMahine.http://www.appletmagi.om[AsmGofer℄ Joahim Shmid: AsmGofer.http://www.tydo.org[BCEL98℄ Markus Dahm: Byte Code Engineering with the BCELAPI. Freie Universität Berlin, Institut für Informatik.Tehnial Report B-17-98.[BCEL-WWW℄ Markus Dahm: Byte Code Engineering Library.http://bel.soureforge.net[BCV-Soundness℄ Cornelia Push: Proving the Soundness of a Java Byte-ode Veri�er Spei�ation in Isabelle/HOL. TehnisheUniversität Münhen, Institut für Informatik.http://www.in.tum.de/~push/[C℄ Brian W. Kerninghan, Dennis M. Rithie: The C Pro-gramming Language, Seond Edition, ANSI C. Prentie-Hall 1998, ISBN 0131103628.[CPP-D℄ Bjarne Stroustrup: Die C++ Programmiersprahe.Addison-Wesly-Longman, 1998, ISBN 3-8273-1296-5.[CPP-E℄ Bjarne Stroustrup: The C++-Programming Language,Third Edition. Addison-Wesley 1997, ISBN 0-201-88954-4.[D3℄ Guido Lang, Andreas Bohne: Delphi 3.0 lernen. Addison-Wesley-Longman 1997, ISBN 3-8273-1190-x.[DesignPatterns℄ Erih Gamma, Rihard Helm, Ralph Johnson, JohnVlissides: Design Patterns Elements of ReusableObjet-Oriented Software. Addison-Wesley 1995, ISBN:0201633612.[DragonBook℄ Alfred V. Aho, Ravi Sethi, Je�rey D. Ullman: Compilers:Priniples, Tehniques, and Tools. Addison-Wesley 1985,ISBN: 0201100886.[EF℄ EletrialFire.http://www.mozilla.org/projets/ef/ 85



Bibliography[f2j℄ Keith Seymour: f2j - Fortran-to-Java Compiler.http://s.utk.edu/f2j/[Fong-WWW℄ Philip W. L. Fong: The mysterious Pass One, �rst draft,September 2, 1997.http://www.s.sfu.a/people/GradStudents/pwfong/personal/JVM/pass1/[Fong2-WWW℄ Philip W. L. Fong: A Flaw with the Spei�ation of theInvokeinterfae Opode.http://www.s.sfu.a/people/GradStudents/pwfong/personal/JVM/invokeinterfae/[FreundMithell℄ Stephen N. Freund, John Mithell: A Formal Frameworkfor the Java Byteode Language and Veri�er. Depart-ment of Computer Siene, Stanford University. Stan-ford, CA 94305-9045. Appeared in OOPSLA '99.[GCC-WWW℄ GCC, The GNU ompiler olletion.http://g.gnu.org[GJ-WWW℄ GJ. A Generi Java Language Extension.http://www.is.unisa.edu.au/~pizza/gj/[InnerSpe℄ Sun Mirosystems: Inner Classes Spei�ation.http://java.sun.om/produts/jdk/1.1/dos/guide/innerlasses/spe/innerlasses.do.html[J2ME-CLDCS℄ Sun Mirosystems: J2METM Conneted Limited DevieCon�guration Spei�ation.http://jp.org/aboutJava/ommunityproess/�nal/jsr030/[JBook℄ Robert Stärk, Joahim Shmid, Egon Börger:JavaTM and the JavaTM Virtual Mahine. Springer-Verlag 2001, ISBN 3-540-42088-6.http://www.inf.ethz.h/~jbook/[JPaper℄ Robert F. Stärk, Joahim Shmid: Java byteode veri�-ation is not possible. ETH Zürih, Department of Com-puter Siene 2000.http://www.inf.ethz.h/~staerk/pdf/jbv00.pdf[JLetures℄ Robert F. Stärk: Java and the JVM: De�nition and Ver-i�ation (37-474).http://www.inf.ethz.h/~jbook/eth37474/http://www.inf.ethz.h/~jbook/eth37474/javaBV.pdf[JNS℄ Robert Magregor, Dave Durbin, John Owlett, AndrewYeomans: JAVATM Network Seurity. Prentie Hall1998, ISBN 0137615299.86



Bibliography[JODE-WWW℄ JODE is a java pakage ontaining a deompiler and anoptimizer for java.http://jode.soureforge.net[JustIe℄ Enver Haase: JustIe. A Free Class File Veri�er forJavaTM .Freie Universität Berlin, Takustraÿe 9, D-14195Berlin; September 2001.http://bel.soureforge.net/http://bel.soureforge.net/justie[JVM℄ Jon Meyer, Troy Downing: JAVA Virtual Mahine.O'Reilly 1997, ISBN 1-56592-194-1.[Ka�e-WWW℄ Ka�e. Ka�e is a leanroom, open soure implementationof a Java virtual mahine and lass libraries.http://www.ka�e.org[KAWA-WWW℄ Kawa, the Java-based Sheme system.http://http://www.gnu.org/software/kawa/[KDE℄ KDE, the K desktop environment.http://www.kde.org[Kimera-WWW℄ The Kimera Veri�er.Currently o�-line beause of a World Wide Web presen-tation rework.http://kimera.s.washington.edu/veri�er.htmlhttp://www-kimera.s.washington.edu[Kimera-TestingJVM℄ Emin Gün Sirer: Testing Java Virtual Mahines. An Ex-periene Report on Automatially Testing Java VirtualMahines. University of Washington, Dept. of ComputerSiene and Engineering.http://kimera.s.washington.edu[Kimera-ProdGram℄ Emin Gün Sirer, Brian N. Bershad: Using ProdutionGrammars in Software Testing. University of Washing-ton, Department of Computer Siene.http://kimera.s.washington.edu[kissme-WWW℄ kissme. A free Java Virtual Mahine.http://kissme.soureforge.net[Krakatoa-WWW℄ Todd A. Proebsting, Sott A. Watterson: Krakatoa:Deompilation in Java (Does Byteode Reveal Soure?).The University of Arizona, Department of ComputerSiene.http://www.s.arizona.edu/people/saw/papers/Krakatoa-COOTS97.ps.Z 87



Bibliography[langspe2℄ James Gosling, Bill Joy, Guy Steele, Gilad Braha: TheJava Language Spei�ation, Seond Edition. Addison-Wesley 2000, ISBN 0201310082.[M2℄ Niklaus Wirth: Programming in Modula-2, Fourth Edi-tion. Springer-Verlag 1988, ISBN 3-540-50150-9.[Mozilla℄ Mozilla.org (The Mozilla Origanization): Mozilla.http://www.mozilla.org[Neuromaner℄ William Gibson: Neuromaner. Ae Books 1994, ISBN0441000681.[ORP-WWW℄ Open Runtime Platform. A Platform For Byteode Sys-tem Researh.http://www.intel.om/researh/mrl/orp/index.htm[PL4JVM℄ Robert Tolksdorf: Programming Languages for the JavaVirtual Mahine.http://www.robert-tolksdorf.de/vmlanguages.html[PMG-WWW℄ PMG. Poor Man's Generiity for Java.[Qian℄ Zhenyu Qian: A Formal Spei�ation of JavaTM VirtualMahine Instrutions for Objets, Methods and Subrou-tines. Bremen Institute for Safe Systems (BISS), FB3Informatik, Universität Bremen, D-28334 Bremen, Ger-many.[SableVM-WWW℄ SableVM. A Byteode Interpreter.http://www.sablevm.org[StataAbadi℄ Raymie Stata and Martin Abadi: A Type System forJava Byteode Subroutines. In: ACM Transations onProgramming Languages and Systems, Vol. 21, No. 1,January 1999, Pages 90-137.[Unknowable℄ G.J. Chaitin: The Unknowable. Springer-Verlag 1999,ISBN 981-4021-72-5.http://www.ums.maine.edu/~haitin/unknowable/[Uniode℄ The Uniode Consortium: The Uniode Standard, Ver-sion 2.0. Niso Press 1996, ISBN 0-201-48345-9.http://www.uniode.org[Yellin-WWW℄ Frank Yellin: Low Level Seurity in Java.http://java.sun.om/sfaq/veri�er.html[VMSPEC2℄ Tim Lindholm, Frank Yellin: The JavaTM VirtualMahine Spei�ation, Seond Edition. Addison-Wesley1999, ISBN 0-201-43294-4.88


