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Abstra
tWhen Sun Mi
rosystems developed their Java Platform in the early 1990s, itwas originally designed for use in networked and embedded 
onsumer-ele
troni
sappli
ations. But when they introdu
ed it around 1995, it qui
kly be
ame usedin World Wide Web browser software. This was a way to bring intera
tive
ontent to demanding World Wide Web users. Sun took great 
are for therobustness of the platform: they planned to 
onne
t embedded devi
es and letthem share data and 
ode over a network. Defe
tive devi
es transmitting baddata or unreliable network 
onne
tions should not 
ause other devi
es to 
rash.This property made Java a good 
hoi
e for the 
ode-exe
uting engine in WorldWide Web browsers: defe
tive server software or transmission errors would not
ause the Java Platform to 
rash; this is also true for purposely mali
ious 
odehidden on the Web. The 
ode-exe
uting part of the Java Platform is 
alledThe Java Virtual Ma
hine (the JVM, for short). This exe
ution engine has toassure that the 
ode to be exe
uted is well-behaved; it has to verify the 
ode.Therefore, the veri�er is an integral part of every JVM, but JustI
e implementsa veri�er that is not integrated in a JVM. It was implemented using a softwarelibrary 
alled the Byte Code Engineering Library (the BCEL, for short) byMarkus Dahm [BCEL98, BCEL-WWW℄.The BCEL is intended to give users a 
onvenient me
hanism to analyze, 
reateand manipulate (binary) Java 
lass �les. It o�ers an obje
t-oriented view ofotherwise raw data, in
luding program 
ode. This library is, therefore, well-respe
ted espe
ially in the 
ompiler-writer 
ommunity whenever the JVM is
hosen as the target ma
hine of the 
ompiler. Compiler ba
k-ends use theBCEL to produ
e 
ode for the JVM; and as new 
ompilers may be faulty, theymay produ
e bad 
ode. Testing these 
ompilers often is a di�
ult task. Thegenerated 
ode should not only be semanti
ally 
orre
t, but it also has to passthe veri�ers of all existing JVM implementations. Normally, a lot of humanintera
tion is required to run test 
ases. If the 
ode is reje
ted by a veri�er,one often does not know why. Most veri�ers emit error messages whi
h do notidentify the o�ending instru
tion.JustI
e presents an Appli
ation Programming Interfa
e (API) that may beused to automate the pro
edure sket
hed above. The 
onstraints imposed on
lass �les are designed to be stri
t, therefore eleminating the need to run severalveri�ers on the generated 
ode. If 
ode passes the JustI
e veri�er, it should passall other veri�ers. JustI
e was also designed to output human-understandablemessages if the veri�
ation of some 
ode fails.The appli
ation range of JustI
e is not limited to 
ompiler ba
k-ends, in thesame sense as the BCEL is not only useful in this area. Transformations ofexisting 
ode and even generation of hand-
rafted 
ode fall into its s
ope, too.As a side e�e
t, JustI
e exports some data stru
tures su
h as a 
ontrol �ow7



Abstra
tgraph; so its API may also be used for appli
ations targeting other problemareas su
h as stati
 analyses of program 
ode.
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1 Introdu
tion1.1 Low Level Se
urity as a Part of a Many-TieredStrategyThe Java programming language is well-known for its inherent se
urity fa
ilitiessu
h as the la
k of pointer arithmeti
 or the need for memory allo
ation anddeallo
ation. Lesser known is that this is only the top of an i
eberg; the JavaPlatform implements a many-tiered se
urity strategy [Yellin-WWW℄. It wasdesigned to run even untrusted 
ode � 
ode that possibly was not produ
edby a 
ompiler for the Java programming language, 
ode that may be 
orruptor 
ode that may have mali
ious intent (su
h as stealing 
redit 
ard numberinformation from a hard disk drive). Three 
onsiderations were made:
• Untrusted 
ode 
ould damage hardware, software, or information on thehost ma
hine.
• It 
ould pass unauthorized information to anyone.
• It 
ould 
ause the host ma
hine to be
ome unusable through resour
edepletion.While some se
urity features su
h as type-safety or the already-mentioned la
kof pointer arithmeti
 of the Java programming language are a 
onvenient help forprogrammers, they 
an only help to redu
e programming errors. Of 
ourse thesefeatures do not help targeting the above problems. At a lower level, however,the Java Platform implements a so-
alled sandbox: an area where 
ode 
an beexe
uted but that has well-de�ned boundaries shielding the rest of the system.This is a
hieved by means of a Java Virtual Ma
hine (JVM) emulation; the hostplatform does not dire
tly run untrusted 
ode, but a run-time system whi
h inturn runs the 
ode, restri
ting its a

ess to system resour
es.A run-time system 
annot safely assume that untrusted 
ode is well-behaved.Code 
ould 
ause sta
k over�ows, sta
k underruns, or otherwise erroneous be-haviour that may bring the run-time system into an unde�ned state � possiblyallowing a

ess to prote
ted memory areas. One 
ould prote
t the run-time sys-tem by letting it predi
t the e�e
ts of every single instru
tion just in time whilea
tually exe
uting it � but that would be too time-
onsuming to be appli
ablein pra
ti
e.Therefore, good behaviour of program 
ode has to be enfor
ed before it isa
tually exe
uted � at least as far as this is possible. This is the lowest level ofJava se
urity; there has to be an integral 
omponent in every JVM implementa-tion doing so ([VMSPEC2℄, page 420). This part of the JVM is 
alled the 
lass�le veri�er, yet better known as the byte
ode veri�er. Te
hni
ally speaking,9



1 Introdu
tionbyte
ode veri�
ation is only a part of 
lass �le veri�
ation so 
lass �le veri�eris a more embra
ing term. JustI
e implements a whole 
lass �le veri�er.

Figure 1.1: Con
ept of Class File Veri�
ation1.2 Why Another Veri�er?As said before, every JVM implementation must 
ontain a 
lass �le veri�er, soit is reasonable to ask for the motivation behind 
reating just another 
lass �leveri�er � espe
ially one that is not part of a JVM implementation.1.2.1 Byte
ode Engineers Need JustI
eShortly after the Java Platform was introdu
ed, it was adopted with pleasurebe
ause of its inherent independen
e from operating systems and 
on
rete hard-ware. Industry and edu
ational institutions with heterogenous networked 
om-puters 
ould now run the same software program on di�erent host ma
hines.Soon, many e�orts were put into resear
h and development of 
ompilers forprogramming languages other than the Java programming language that usethe JVM byte
ode as target.Nowadays, many other programming languages do have the JVM as its targetplatform; e.g. Fortran [f2j℄, Ada [AppMag-WWW℄, S
heme [KAWA-WWW℄ ormodi�ed Java language versions [GJ-WWW, PMG-WWW℄. A vast 
olle
tionof programming languages targeting the JVM 
an be found on the World WideWeb [PL4JVM℄.All these 
ompilers emit 
ode for the JVM � and so all these 
ompilers haveto pass the JVM's veri�er. Implementors of su
h 
ompilers have to 
onsider the10



1.2 Why Another Veri�er?se
urity related 
onstraints the JVM poses on the generated 
ode. It is di�
ultto test if the emitted 
ode works on all JVM implementations, passing all JVMveri�er implementations. This is espe
ially problemati
 if not all of the proje
t's
lass �les are loaded into the JVM during a test run, be
ause then they will notbe veri�ed.Having an opportunity to verify the transitive hull of referen
ed 
lass �les(starting with some main 
lass �le) would be of help; JustI
e o�ers it.The Byte
ode Engineering Library by Markus Dahm is often used as a 
om-piler ba
k-end to emit 
ode, but it is also used to hand-
raft 
ode or to imple-ment byte
ode transformations. Be
ause JustI
e works 
losely together withthe BCEL, users of the BCEL do not even have to leave their developmentenvironment to run the JustI
e veri�er.To our knowledge, JustI
e is the only implementation of a Java 
lass �leveri�er that was written in the Java programming language [langspe
2℄ itself1.Be
ause of its Veri�
ation API, it 
an be in
luded in other software proje
tswritten in Java with more ease than any other veri�er implementation in adi�erent programming language 
ould provide.1.2.2 JustI
e is VerboseUsually, when 
lasses pass the veri�er, it is mute. JustI
e, in 
ontrast, distin-guishes between veri�
ation results and messages. Messages are often warnings,but the reason for emitting su
h a warning instead of a negative veri�
ationresult is be
ause the 
lass �le does not pose a threat to the integrity of the JVMand thus does not have to be reje
ted.When a veri�
ation error o

urs and the 
lass �le is reje
ted, even the built-inveri�ers usually produ
e some output saying so. As an example, 
onsider thefollowing veri�er run:ehaase�haneman:/home/ehaase > java C
Ex
eption in thread "main" java.lang.VerifyError:(
lass: C
, method: ttt signature: ()V)Re
ursive 
all to jsr entryOne might ask whi
h �jsr entry� (a bran
h target of a jsr or a jsr_w instru
-tion) is 
alled re
ursively and whi
h instru
tions may be responsible for this.Compare this to JustI
e's output:[...℄Pass 3b, method number 0 ['publi
 stati
 void ttt()'℄:VERIFIED_REJECTEDConstraint violated in method 'publi
 stati
 void ttt()':Subroutine with lo
al variable '1', JSRs '[ 36: jsr[168℄(3) -> astore_1,8: jsr[168℄(3) -> astore_1, 30: jsr[168℄(3) -> astore_1, 23: jsr[168℄(3)1In a personal 
ommuni
ation, Robert Stärk told the author that there was a Java imple-mentation of the veri�er dis
ussed in [JBook℄, written by Joa
him S
hmid using the BCEL.However, it is not released for publi
 use yet. 11



1 Introdu
tion-> astore_1℄', RET ' 62: ret[169℄(2) 1' is 
alled by a subroutine whi
huses the same lo
al variable index as itself; maybe even a re
ursive
all? JustI
e's 
lean definition of a subroutine forbids both.[...℄Warnings:Pass 2: Attribute 'LineNumber(0, 4), LineNumber(0, 5), LineNumber(15,8), LineNumber(39, 11), LineNumber(47, 12), LineNumber(57, 13), LineNumber(64,15)' as an attribute of Code attribute '<CODE>' (method 'publi
 stati
void ttt()') will effe
tively be ignored and is only useful for debuggersand su
h.Pass 2: Attribute 'LineNumber(0, 1), LineNumber(4, 1)' as an attributeof Code attribute '<CODE>' (method 'publi
 void <init>()') will effe
tivelybe ignored and is only useful for debuggers and su
h.Pass 3a: LineNumberTable attribute 'LineNumber(0, 4), LineNumber(0,5), LineNumber(15, 8), LineNumber(39, 11), LineNumber(47, 12), LineNumber(57,13), LineNumber(64, 15)' refers to the same 
ode offset ('0') more thanon
e whi
h is violating the semanti
s [but is sometimes produ
ed byIBM's 'jikes' 
ompiler℄.This output obviously has an answer to the above question; it shows the onlyjsr or jsr_w instru
tions possibly responsible for a re
ursive 
all (whi
h is notallowed by the spe
i�
ation of the JVM). For the spe
ial �but 
lean� de�nitionof subroutines JustI
e uses, please see se
tion 3.3.2.Note also the warning messages. Class �les that were not generated by Sun'sjava
 
ompiler have a tenden
y to look a little di�erent in some 
orner 
ases.IBM's jikes 
ompiler, for instan
e, produ
es LineNumberTable attributes (see2.1.1) whi
h look di�erent from those 
reated by java
. Dete
ting su
h di�er-en
es is desirable be
ause future JVMs will have stri
ter veri�
ation 
he
ks2(whi
h most old java
-
ompiled 
lass �les will probably still pass). JustI
eguides byte
ode engineers to 
reate 
lass �les that are indistinguishable fromthose 
reated by java
 to retain 
ompatibility with Sun's future JVM imple-mentations. Figure 1.2 graphi
ally shows the relationship between 
lass �lesand the veri�er3.1.2.3 JustI
e is FreeCurrently, there is no other free and 
omplete open sour
e veri�er availableknown to the author. You may have a look at the JVM's sour
e 
ode by SunMi
rosystems but you are not allowed to use the knowledge from that inspe
tionfor your own proje
ts or even use their 
ode. JustI
e is a 
lean-room implemen-tation: the author wrote JustI
e by only reading the JavaTM Virtual Ma
hineSpe
i�
ation, Se
ond Edition [VMSPEC2℄ and 
omparing the behaviour of Jus-2The Solaris port of Sun's JVM, version 1.3.0_01, already has (some of) the stri
ter 
he
ksbuilt in. You may enable them using the 
ommand-line option '-Xfuture'. Nothing aboutthis issue is mentioned in the spe
i�
ation [VMSPEC2℄.3This is a simpli
isti
 �gure; unfortunately, there are 
lass �les produ
ed by the java
 
om-piler that do not pass the veri�er. Please see se
tion 7.2.2 for more details.12



1.2 Why Another Veri�er?

Figure 1.2: Venn diagram showing the operating domain of the Java veri�er.tI
e with the behaviour of 
ommer
ial implementations of Sun Mi
rosystemsand IBM Corporation.The open sour
e JVM implementation Ka�e [Ka�e-WWW℄, for example,does not have a 
omplete veri�er built in (although mandated by the JVMspe
i�
ation).Kissme [kissme-WWW℄, another open sour
e JVM implementation, 
urrentlydoes not in
lude any veri�er at all.The JVM implementations SableVM [SableVM-WWW℄ and Intel Corpora-tion's Open Runtime Platform [ORP-WWW℄ are platforms to experiment withperforman
e-enhan
ements. They are not intended to work as general-purposeJVMs so they do not need to implement veri�ers.Other open sour
e proje
ts that 
ould make use of a free veri�er in
lude theJava 
ompiler g
j whi
h is part of the GNU 
ompiler 
olle
tion [GCC-WWW℄.JustI
e is 
overed by the well-known and respe
ted software li
ense GNUGeneral Publi
 Li
ense (GPL); see se
tion 7.4. The author hopes other freesoftware will bene�t from it; from the JustI
e software [JustI
e℄ as well as fromthis paper des
ribing some of the inner workings of JustI
e.
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2 The Java Virtual Ma
hineThe Java Virtual Ma
hine (JVM) is an abstra
t ma
hine spe
i�ed in [VMSPEC2℄.It has no knowledge about the Java programming language; but only of a 
ertainbinary �le format: the 
lass �le format. A 
lass �le 
ontains ma
hine instru
-tions for the JVM (
alled byte
odes), a symbol table (
alled 
onstant pool) andsome other an
illary information.On method invo
ation, a lo
al sta
k frame is set up 
alled the exe
ution frame.It 
onsists of an operand sta
k and lo
al variables (whi
h may be 
ompared toregisters of traditional ma
hines).The instru
tions in the 
ode arrays of 
lass �les are interpreted by the JVM.There are 212 legal instru
tions; they have read-a

ess to the 
lass �le's 
on-stant pool and they 
an modify the operand sta
k and the lo
al variables intheir exe
ution frame. An invoked method reads its arguments from the lo
alvariables. Certain instru
tions pass a return value to the invoking method.2.1 The ClassFile Stru
tureTraditionally, the JVM loads its programs from �les stored on �le systems ofhost ma
hines; these �les have names that end with �.
lass�. It is possible tostore the �les in various other ways; a so-
alled 
lass loader is then used totransform the �les internally to the desired, basi
 
lass �le format. Therefore, itsu�
es to explain the stru
ture of traditional 
lass �les. Every 
lass �le 
onsistsof a single ClassFile stru
ture as de�ned below. It de�nes a single 
lass asknown from the Java Programming Language [langspe
2℄. The terms 
lass and
lass �le may therefore be used inter
hangeably.As we will see, the ClassFile stru
ture and its sub-stru
tures are de�nedfor upwards 
ompatibility, i.e., new stru
ture de�nitions 
an be added to thespe
i�
ation easily at a later time.ClassFile {u4 magi
;u2 minor_version;u2 major_version;u2 
onstant_pool_
ount;
p_info 
onstant_pool[
onstant_pool_
ount-1℄;u2 a

ess_flags;u2 this_
lass;u2 super_
lass;u2 interfa
es_
ount;u2 interfa
es[interfa
es_
ount℄;u2 fields_
ount; 15



2 The Java Virtual Ma
hine

Methods

Fields

Implemented interfaces

Access rights

Header

Constant pool

Class attributes

ConstantFieldref
"aVariable"
"[Ljava/lang/Object;"

"HelloWorld"

"java/io/PrintStream"

ConstantMethodRef
"println"
"(Ljava/lang/String;)V"

ConstantClass
"java/io/PrintStream"

getstatic     java.lang.System.out

invokevirtual java.io.PrintStream.println

ldc           "Hello, world"

HelloWorld.class

"Hello, world"
ConstantString

A 
lass �le 
onsists of 
onstants, �elds, methods, attributes and some an
illaryinformation. This �gure was taken from [BCEL98℄, used with permission of theauthor. Figure 2.1: A Class File
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2.1 The ClassFile Stru
turefield_info fields[fields_
ount℄;u2 methods_
ount;method_info methods[methods_
ount℄;u2 attributes_
ount;attribute_info attributes[attributes_
ount℄;}You may read an 'u' as 'byte times'; e.g., 'u2' means 'two bytes in size'. We willnot delve into too mu
h detail here; the exa
t spe
i�
ation of the entries arepublished by Sun [VMSPEC2℄. But one should note that besides some otherinformation, a 
lass �le basi
ally de�nes attributes, 
onstants, �elds and meth-ods. Also, there are strong stru
tural 
onstraints imposed on 
lass �les. It is averi�er's task to validate them.2.1.1 AttributesThe general format of an attribute is de�ned below.attribute_info {u2 attribute_name_index;u4 attribute_length;u1 info[attribute_length℄;}An attribute is basi
ally a typed data 
ontainer; its type is determined byits name. Every JVM is required to be silent about attributes of types it doesnot know. On the other hand, newly de�ned attributes are required not to im-pose a semanti
al 
hange on the 
lass �le. These attributes should be uniquelynamed; in fa
t, the pair (<attribute name>, <attribute length>) is requiredto be unique. This is guaranteed be
ause attributes not de�ned by Sun Mi-
rosystems have to be named a

ording to the pa
kage naming s
heme of theJava Programming Language [langspe
2℄. Certain basi
 attributes are prede-�ned. They are used in the ClassFile (see se
tion 2.1), field_info (see se
tion2.1.3) and method_info (see se
tion 2.1.4). Also, attributes may be nested: theCode attribute referen
es other attributes.Some examples for prede�ned attributes are listed below.The ConstantValue attributeThe ConstantValue attribute has the following format:ConstantValue_attribute {u2 attribute_name_index;u4 attribute_length;u2 
onstantvalue_index;}
17



2 The Java Virtual Ma
hineThe ConstantValue attribute represents the value of a 
onstant �eld. It has a�xed length: it 
ontains only a two-byte referen
e into the 
onstant pool. Onlyfield_info stru
tures (see se
tion 2.1.3) 
ontain this type of attribute.The Code AttributeThe Code attribute is used in the method_info (see se
tion 2.1.4) stru
ture. Itrepresents the program 
ode of a method and it is de�ned as follows:Code_attribute {u2 attribute_name_index;u4 attribute_length;u2 max_sta
k;u2 max_lo
als;u4 
ode_length;u1 
ode[
ode_length℄;u2 ex
eption_table_length;{ u2 start_p
;u2 end_p
;u2 handler_p
;u2 
at
h_type;} ex
eption_table[ex
eption_table_length℄;u2 attributes_
ount;attribute_info attributes[attributes_
ount℄;}This is the most 
omplex of all prede�ned attributes. Every method that has
ode (i.e., every non-native, non-abstra
t method) must have su
h an attribute.Note that the maximum sta
k depth and the number of lo
al variables for amethod invo
ation are de�ned here. This is important for the JVM when it 
re-ates an exe
ution frame (see se
tion 2.2.1) at the time the method is invoked.Also, the ex
eption handlers are de�ned here. Ex
eption handlers prevent anexe
uting method from an abrupt 
ompletion if an ex
eptional situation o

urs.Code areas are said to be prote
ted against a 
lass of ex
eptional situations byan ex
eption handler1. Algorithm 1 shows an example for the use of ex
eptionhandlers. The exa
t meaning of the instru
tion op
odes is not important here,the most 
ommon instru
tions are explained later in this paper.The most important item, however, is the 
ode item. It de�nes the byte
odeof this method; i.e., the JVM ma
hine instru
tions.1The JVM 
losely re�e
ts the ex
eption me
hanism of the Java programming language[langspe
2℄. In the Java programming language, ex
eptions 
an be thrown, and they 
anbe 
aught expli
itly. If an internal JVM error o

urs, the JVM also �impli
itly� throws anex
eption.18



2.1 The ClassFile Stru
tureAlgorithm 1 Use of Ex
eption Handlers[Let start_p
 and end_p
 prote
t the area A to B, in
lusive. Let the
at
h_type be �java.lang.NullPointerEx
eption�. Let the handler_p
point to C.℄a
onst_null ; push a NULL onto the operand sta
k.A: nop ; do nothingB: getfield Foo::bar ; dereferen
e NULL, 
ause NullPointerEx
.return ; never exe
utedC: nop ; this is exe
uted: we 
ould handlenop ; the NullPointerEx
eptionreturn ; leave method (
omplete normally)The LineNumberTable AttributeThe LineNumberTable attribute is de�ned as follows:LineNumberTable_attribute {u2 attribute_name_index;u4 attribute_length;u2 line_number_table_length;{ u2 start_p
;u2 line_number;} line_number_table[line_number_table_length℄;}This attribute des
ribes the relation between sour
e 
ode line numbers andJVM instru
tion o�sets in the 
ode array of the Code_attribute; it 
an beused by debuggers to show the sour
e 
ode of 
urrently exe
uting JVM ma
hineinstru
tions. This attribute is usually a sub-attribute of a Code_attribute.Multiple LineNumberTable attributes may together represent a given line of asour
e 
ode �le.2.1.2 ConstantsAll the 
onstants together form the 
onstant pool. The general 
p_info stru
-ture is straightforward.
p_info {u1 tag;u1 info[℄;}The 'tag' de�nes what 'info' follows it. Constants de�ne either 
onstant valuesor 
onstant symboli
 referen
es, su
h as referen
es to other 
lasses. Currently,eleven 
onstant types are de�ned: Class, Fieldref, Methodref, Interfa
e-Methodref, String, Integer, Float, Long, Double, NameAndType and Utf8. 19



2 The Java Virtual Ma
hineMost of the names are self-explanatory; the interested reader will �nd moreinformation in the spe
i�
ation [VMSPEC2℄. Constants 
an be nested; this isdone by referring to the 
onstant pool index of the en
losed 
onstant.See the following examples.CONSTANT_Utf8_info {u1 tag;u2 length;u1 bytes[length℄;}A CONSTANT_Utf8 represents a 
onstant string. Su
h a string is e.g. used todes
ribe names of methods, names of �elds, names of attributes, types of meth-ods or types of �elds. This string is en
oded in UTF-8 format, a variant of theuni
ode 
hara
ter set [Uni
ode℄. The tag for this type of 
onstant is simply thenumber 1, as de�ned in the Java Virtual Ma
hine Spe
i�
ation, Se
ond Edition[VMSPEC2℄.CONSTANT_NameAndType_info {u1 tag;u2 name_index;u2 des
riptor_index;}A Constant_NameAndType represents a name and a signature of a method,the tag is the number 12. Both 
lass_index and des
riptor_index refer to aCONSTANT_Utf8.CONSTANT_Interfa
eMethodref_info {u1 tag;u2 
lass_index;u2 name_and_type_index;}A CONSTANT_Interfa
eMethodref des
ribes a referen
e to a method de�nedin an interfa
e 
lass (see se
tion [langspe
2℄ for an explanation of interfa
es),the tag is number 11. The interfa
e 
lass is referen
ed via a two-byte index intothe 
onstant pool. A Constant_Class is expe
ted there des
ribing a referen
eto some 
lass �le. Every method has a name, zero or more argument typesand a return type; this is des
ribed in the CONSTANT_NameAndType that is alsoreferen
ed via a two-byte 
onstant pool index.Note that there are impli
it 
onstraints on the integrity of a 
lass �le: forexample, there must not be a CONSTANT_Integer where a CONSTANT_Utf8 isexpe
ted for a 
ertain entity. As another example, the names and the types ofmethods are en
oded as strings in UTF-8 format [Uni
ode℄. They have to bewell-formed (a

ording to the spe
i�
ation) to be valid.20



2.1 The ClassFile Stru
ture2.1.3 FieldsEa
h �eld is des
ribed by a �eld_info stru
ture as de�ned below.field_info {u2 a

ess_flags;u2 name_index;u2 des
riptor_index;u2 attributes_
ount;attribute_info attributes[attributes_
ount℄;}A �eld has to be unique in a 
lass �le with respe
t to its name and des
riptor2.We see that �elds referen
e 
onstants in the 
onstant pool via their 
onstantpool indi
es (su
h as a CONSTANT_Utf8 des
ribing a �eld's name). An importantattribute used by �elds is the ConstantValue attribute (see se
tion 2.1.1).The a

ess_flags entry is a bit ve
tor that spe
i�es the a

essibility andother properties3 of the �eld. E.g., a �eld with the ACC_PRIVATE4 bit set isnot a

essible to other 
lasses. A �eld with the ACC_PUBLIC5 bit set is a

essi-ble to any other 
lass. Any 
ombination with both the ACC_PRIVATE and theACC_PUBLIC bit set is not valid.The des
riptor_index refers to a CONSTANT_Utf8 that symboli
ally en
odesthe type of the �eld.2.1.4 MethodsEa
h method is des
ribed by a method_info stru
ture as de�ned below.method_info {u2 a

ess_flags;u2 name_index;u2 des
riptor_index;u2 attributes_
ount;attribute_info attributes[attributes_
ount℄;}As we 
an easily see, this is exa
tly the same stru
ture we already know asfield_info (see se
tion 2.1.3). The di�eren
e lies in the meaning of the enlistedentities. For example, an a

ess �ag saying a �eld was volatile (non-
a
heable)would not make any sense if set in a method_info stru
ture. Vi
e versa, an a
-
ess �ag saying the �oating point instru
tions should work in �FP-stri
t� modewould be of no use if set in a field_info stru
ture.2The des
riptor of a �eld des
ribes its type. E.g., a des
riptor of �[I� means �one-dimensionalarray of int�.3Often 
alled visibility.4Bit number 1.5Bit number 0. 21



2 The Java Virtual Ma
hineMethods use a di�erent set of attributes than �elds; for example, the Constant-Value attribute (see se
tion 2.1.1) is of no use here. The Code and Ex
eptionsattributes frequently used by methods are of no use for �elds on the other hand.2.2 The Exe
ution EngineBefore a pie
e of 
ode (the 
ode of a �method�) is exe
uted, an exe
ution frameis set up. It 
onsists of a program 
ounter (as known from traditional CPUs), aset of lo
al variables (similar to registers known from traditional CPUs), and anoperand sta
k. For ea
h new invo
ation instan
e of a method, a new exe
utionframe is set up; it is destroyed on method termination.Be
ause a method may invoke other methods or itself re
ursively, there is aglobal method invo
ation sta
k.There also is a garbage-
olle
ted heap shared among the exe
ution frames.This heap is used for obje
t allo
ation (see se
tion 2.2.2).The number of lo
al variables is not �xed. Every method de�nes how manylo
al variables are used for its 
ode (up to 65536).Also note that there is no equivalent of a Pro
essor Status Word (PSW) inthe JVM. Traditionally, a PSW has �ags that are set impli
itly during exe
utionof the instru
tions (su
h as an over�ow or is-zero �ag). This is often used for
onditional bran
hing. The JVM, however, uses the operand sta
k to store theresult of a 
omparison instru
tion expli
itly. This result is often read from thesta
k by the JVM's 
onditional bran
hing instru
tions.Should ex
eptional situations o

ur (su
h as an out-of-memory situation),the JVM does not lo
k up. Instead, an �ex
eption is thrown�; the 
urrentlyexe
uting program is signalled. These signals 
an be pro
essed (�ex
eptions
an be 
aught�). If su
h a signal is not handled by the 
urrently exe
utingmethod, the JVM will sear
h a handler through the invo
ation hierar
hy andstop exe
ution only if none was found.There is a thread me
hanism in the JVM. Basi
ally every thread 
reates anown method invo
ation sta
k (so there may be more than one a
tive exe
utionframe at a time), but this feature is not important for the rest of this text.2.2.1 Lo
al Variables and the Operand Sta
kThe method information in a 
lass �le de�nes how many lo
al variables areused on this method's invo
ation. It also de�nes the maximum operand sta
ksize. Together, the lo
al variables array and the operand sta
k are 
alled theexe
ution frame.A single sta
k slot has a width of 32 bits, whi
h is also the width of a lo
alvariable. Therefore, values of types that o

upy 64 bits (double and long) mustbe stored in two 
onse
utive sta
k slots or lo
al variables.The veri�er takes 
are that the sta
k 
annot over�ow and that it 
annotunder�ow. Also, it takes 
are that instru
tions may only a

ess lo
al variablesif they 
ontain a value of a known, 
orre
t type (see se
tion 3.3).22



2.2 The Exe
ution Engine

This �gure shows a method invo
ation sta
k. Method main was invoked by thesystem, main invoked foo, foo invoked bar, and bar invoked foo re
ursively.This �gure assumes main allo
ates one lo
al variable and one operand sta
k slot,foo allo
ates three lo
al variables and two operand sta
k slots and bar allo
atesone lo
al variable and two operand sta
k slots.Figure 2.2: Method Invo
ation Sta
k
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2 The Java Virtual Ma
hine2.2.2 Introdu
tion to JVM Instru
tionsThis se
tion is derived from se
tion 2.2 of [BCEL98℄, used with permission ofthe author.The JVM's instru
tion set 
urrently 
onsists of 212 instru
tions, 44 op
odesare marked as reserved and may be used for future extensions or intermediateoptimizations within the Virtual Ma
hine. The instru
tion set 
an be roughlygrouped as follows:Sta
k operations: Constants 
an be pushed onto the sta
k either by loadingthem from the 
onstant pool with the ld
 instru
tion or with spe
ial�short-
ut� instru
tions where the operand is en
oded into the instru
tions,e.g., i
onst_0 or bipush (push byte value).Arithmeti
 operations: The instru
tion set of the JVM distinguishes its operandtypes using di�erent instru
tions to operate on values of spe
i�
 type.Arithmeti
 operations starting with i, for example, denote an integer op-eration. E.g., iadd that adds two integers and pushes the result ba
k onthe operand sta
k. The Java types boolean, byte, short, and 
har arehandled as integers by the JVM.Control �ow: There are bran
h instru
tions like goto and if_i
mpeq, whi
h
ompares two integers for equality. There is also a jsr6 (jump into sub-routine) and ret (return from subroutine) pair of instru
tions. Ex
eptionsmay be thrown with the athrow instru
tion. Bran
h targets are 
oded aso�sets from the 
urrent byte 
ode position, i.e., they are 
oded with aninteger number.Load and store operations for lo
al variables like iload and istore. Thereare also array operations like iastore whi
h stores an integer value intoan array.Field a

ess: The value of an instan
e �eld may be retrieved with getfieldand written with putfield. For stati
 �elds, there are getstati
 andputstati
 
ounterparts.Method invo
ation: Methods may either be 
alled via stati
 referen
es withinvokestati
 or be bound virtually with the invokevirtual instru
tion.Super 
lass methods and private methods are invoked with invokespe
ial.Obje
t allo
ation: Class instan
es are allo
ated with the new instru
tion, ar-rays of basi
 type like int[℄ with newarray, arrays of referen
es likeString[℄[℄ with anewarray or multianewarray.Conversion and type 
he
king: For sta
k operands of basi
 type there exist
asting operations like f2i whi
h 
onverts a �oat value into an inte-ger. The validity of a type 
ast may be 
he
ked with 
he
k
ast and6There is a �wide� version of jsr 
alled jsr_w. The instru
tions jsr/jsr_w and ret play inimportant role in 
hapter 3.3.24



2.2 The Exe
ution Enginethe instan
eof operator 
an be dire
tly mapped to the equally namedinstru
tion.
Most instru
tions have a �xed length, but there are also some variable-lengthinstru
tions: In parti
ular, the lookupswit
h and tableswit
h instru
tions,whi
h are often used by 
ompilers to implement the Java language swit
h()statements. Sin
e the number of 
ase 
lauses may vary, these instru
tions
ontain a variable number of statements.In a 
lass �le, the 
ode item in the Code attributes (whi
h in turn are at-tributes of method_info stru
tures), is a byte array in whi
h binary represen-tations of JVM instru
tions are stored sequentially. This is also 
alled byte
ode.The JVM is a sta
k-based ma
hine. There are lo
al variables whi
h may be
ompared to registers, but most instru
tions work on the operand sta
k. E.g.,the iadd instru
tion pops two integers from the operand sta
k and pushes theresult of the add operation on top of the sta
k.We will not list all of the instru
tions here, sin
e these are explained in detailin the JVM spe
i�
ation. However, you will �nd the most 
ommon instru
tionsin table 2.1, 
ited with slight 
orre
tions and modi�
ations from 
hapter 4 of[JNS℄.

Table 2.1: Type Pre�xes and the Most Common JVM Instru
tionsPre�x Byte
ode typei Integerf Floating pointl Longd Double pre
ision �oating pointb Bytes Short
 Chara
tera Obje
t referen
e 25



2 The Java Virtual Ma
hineInstru
tion int long �oat double byte 
har short obje
t ref. Fun
tion?2
 X Convert value of type<?> to 
hara
ter?2d X X X Convert value of type<?> to double?2i X X X Convert value of type<?> to integer?2f X X X Convert value of type<?> to �oat?2l X X X Convert value of type<?> to long?2s X Convert value of type<?> to short?add X X X X Add two values of type<?>?aload X X X X X X X X Push an element of type<?> from an array ontothe sta
k?and X X Perform logi
al AND ontwo values of type <?>?astore X X X X X X X X Pop an element of type<?> from the sta
k andstore it in an array oftype <?>?
mp X Compare two long val-ues. If they are equalpush 0, if the �rst isgreater push 1, else push-1?
mpg X X Compare two IEEE val-ues of type <?> fromthe sta
k. If they areequal push 0, if the �rstis greater push 1, if these
ond is greater push -1. If either is NaN (nota number) push 1?
mpl X X Compare two IEEE val-ues of type <?> fromthe sta
k. If they areequal push 0, if the �rstis greater push 1, if these
ond is greater push -1. If either is NaN (nota number) push -1?
onst X X X X X Push a 
onstant value oftype <?> onto the sta
k?div X X X X Perform a division usingtwo values of type <?>and push the quotientonto the sta
k?in
 X In
rement the top of thesta
k (possibly by a neg-ative value)?ipush X X Push a sign extendedbyte or short value ontothe sta
k?load X X X X Push a value of type<?> from a lo
al vari-able onto the sta
k?mul X X X X Perform multipli
ationof two values of type<?>?neg X X X X Negate a value of type<?>?newarray X Create a new array ofobje
t referen
es?or X X Perform logi
al OR ontwo values of type <?>?rem X X X X Perform a division usingtwo values of type <?>and push the remainderonto the sta
k?return X X X X X Return a value of type<?> to the invokingmethod?shl X X Perform arithmeti
 shiftleft on a value of type<?>?shr X X Perform arithmeti
 shiftright on a value of type<?>?store X X X X X Pop a value of type <?>and store it into a lo
alvariable?sub X X X X Perform a subtra
tionusing two values of type<?>
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2.2 The Exe
ution EngineThe op
ode names are mostly self-explanatory. In this paper, all byte
ode is
ommented to support the intuitive understanding. Algorithms 2 and 3 show anexample byte
ode taken from [BCEL98℄. It implements the well-known fa
ultyfun
tion. To understand this example, it is important to know that methodarguments are stored into the lo
al variables of a newly 
reated exe
ution frameupon method invo
ation.Algorithm 2Methed fa
 in a 
lass Fa
ulty, Java programming language versionpubli
 stati
 final int fa
(int n){return (n==0)?1:n*fa
(n-1);}Algorithm 3 Method fa
 in a 
lass Fa
ulty, Java byte
ode versionFa
ulty.fa
 (I)I0: iload_0 ; load argument onto sta
k1: ifne #8 ; non-zero? Then bran
h to 8.4: i
onst_1 ; push 
onstant 1 onto sta
k5: goto #16 ; jump to 168: iload_0 ; load argument onto sta
k9: iload_0 ; load argument onto sta
k10: i
onst_1 ; push 
onstant 1 onto sta
k11: isub ; subtra
t the sta
k top from; the sta
k next-to-top whi
h be
omes; the new sta
k top12: invokestati
 Fa
ulty.fa
 (I)I ; 
all method fa
 re
ursively,; the new invo
ation; instan
e's argument is the sta
k top15: imul ; multiply the return value with the; argument given to the 
urrent; invo
ation instan
e16: ireturn ; return value on top of the; sta
k to the invoking method
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3 Spe
i�
ation of the Veri�
ationPassesSun des
ribes a four-pass 
lass �le veri�er in The Java Virtual Ma
hine Spe
i-�
ation, Se
ond Edition [VMSPEC2℄. It is not ne
essary to implement the ver-i�
ation algorithms literally; and it is not possible anyway (see se
tion 3.3.2).However, implementing a veri�er with a multiple-pass ar
hite
ture makes sense.It is a good thing to stay 
lose to the spe
i�
ation be
ause it is well-knownthroughout the byte
ode engineering 
ommunity. Also, the boundaries betweenthe passes are not arbitrary. They are drawn to improve the performan
e ofthe veri�ers built into JVMs. For example, 
lasses are not veri�ed (
ompletely)before they are a
tually used but they are loaded as soon as they are referen
edin a 
ertain way. Most veri�ers use the traditional multiple-pass ar
hite
ture,in
luding Kimera [Kimera-WWW℄. Work in other dire
tions (for instan
e, theone-pass-ar
hite
ture proposed by Fong [Fong-WWW℄) did not yield lasting re-sults.Pass one is basi
ally about loading a 
lass �le into the JVM in a sane way andpass two veri�es that the loaded 
lass �le information is 
onsistent. Pass threeveri�es that the program 
ode is well-behaved; pass four veri�es things that 
on-
eptually belong to pass three but are delayed to the run-time for performan
ereasons.Sometimes implementation details are dis
ussed in this 
hapter. Wheneverthe spe
i�
ation [VMSPEC2℄ was ambigous about some issue, the behaviour ofSun's JVM implementations was observed. The dis
ussed details are part of thespe
i�
ation of the JustI
e veri�er.3.1 Pass OneThe �rst pass of the veri�er is only vaguely spe
i�ed. It is there to assure a
lass �le �has the basi
 format of a 
lass �le. The �rst four bytes must
ontain the right magi
 number. All re
ognized attributes must beof the proper length. The 
lass �le must not be trun
ated or haveany extra bytes at the end. The 
onstant pool must not 
ontain anysuper�
ially unre
ognizable information� ([VMSPEC2℄, page 141).The right magi
 number is 0xCAFEBABE ([VMSPEC2℄, page 94), whi
h iseasy to assure.It is not 
lear what �super�
ially unre
ognizable information� exa
tly is, how-ever. If an attribute is not known to the JVM (or veri�er) implementation, ithas to be ignored � so this does not seem to be �super�
ially unre
ognizableinformation�. Attributes that are not used 
annot be dete
ted in pass one. One29



3 Spe
i�
ation of the Veri�
ation Passeswould have to look at the byte
odes to de
ide whether an attribute is used ornot (whi
h is not the domain of pass one, but of pass three).Observations show that most existing JVM veri�ers1 ignore �extra bytes atthe end� instead of reje
ting 
lass �les bearing them.The other two statements spe
ify veri�
ation of the 
lass �le stru
ture (andthe stru
ture of the attributes therein). But this is also the domain of pass two!Only by inspe
ting the way the JVM loads, resolves and prepares 
lasses onewill understand the pre
ise boundary between veri�
ation passes one and two[Fong-WWW℄.'Being 
areful when loading a 
lass �le' is a good de�nition for pass one: thestru
ture of the �le to load is untrusted. Every impli
it statement su
h as �thisattribute has a length of 1234 bytes in total� is validated.Resolution is the transformation of a symboli
 referen
e to an a
tual referen
e� i.e., as long as there is only a symboli
 referen
e to an entity, this entity 
annotbe veri�ed at all be
ause it has not been loaded yet. Passes two and three areperformed during the resolution of a 
lass �le; while loading of the 
lass �le�pass one� must have been performed before. Resolution as su
h is meaninglessto JustI
e; the term is only used to draw the borders between the veri�
ationpasses.3.2 Pass TwoThe 
he
ks performed in pass two enfor
e that the following 
onstraints aresatis�ed.
• Ensuring that �nal 
lasses are not sub
lassed and that �nal methods arenot overridden.
• Che
king that every 
lass (ex
ept java.lang.Obje
t) has a dire
t super-
lass.
• Ensuring that the 
onstant pool satis�es the do
umented stati
 
onstraints:for example, that ea
h CONSTANT_Class_info stru
ture in the 
onstantpool 
ontains in its name_index item a valid 
onstant pool index for aCONSTANT_Utf8_info stru
ture.
• Che
king that all �eld referen
es and method referen
es in the 
onstantpool have valid names, valid 
lasses, and a valid type des
riptor.As Frank Yellin puts it [Yellin-WWW℄: pass two �performs all veri�
ation that
an be performed without looking at the byte
odes�. Also, �this pass doesnot a
tually 
he
k to make sure that the given �eld or method really existsin the given 
lass; nor does it 
he
k that the type signatures given refer toreal 
lasses.� Note that again resolution plays an important role to 
reate theboundary between two passes; here it is the boundary between pass two and1An example of a veri�er with this behaviour is the one implemented in Sun's Solaris portof the JVM, version 1.3.0_01.30



3.3 Pass Threepass three. Be
ause linking-time veri�
ation enhan
es the performan
e of theJVM, 
he
ks that basi
ally belong to pass two are delayed to pass three. Thisleads to the obvious 
ontradi
tion in the senten
es 
ited above.This performan
e enhan
ement has an ugly side e�e
t. Consider a referen
eto a method m 
ontained in a 
lass �le C that does not exist. As long as thisreferen
e is not used, i.e., resolved, the absen
e of C 
annot be dete
ted. Su
h areferen
e should in the author's opinion regarded as �super�
ially unre
ognizableinformation� (see se
tion 3.1) and therefore be dete
ted.This pass has to verify the integrity of the 
las �le's data stru
tures as ex-plained in se
tion 2.1. As an example, 
onsider the LineNumberTable atribute.Sun did not spe
ify there has to be exa
tly one LineNumberTable attribute (ornone at all) per method, so possibly there is more than one attribute of thatkind. This lax spe
i�
ation is not ne
essary due to the fa
t that you 
an putall information in a single LineNumberTable_attribute2, but Sun did spe
ifyit this way ([VMSPEC2℄, page 129).Veri�ers are requested to reje
t 
lass �les with in
onsistent information intheir attributes. However, here it may be that only by looking at all Line-NumberTable_attributes of a method, an in
onsisten
y 
an be dete
ted. Jus-tI
e does so and reje
ts 
lass �les with in
onsistent LineNumberTable informa-tion.Furthermore, it issues warnings if su
h an attribute is dete
ted at all to dis-
ourage its use (see se
tion 4.2). This is done be
ause of possible di�erentinterpretations of the spe
i�
ation.It should be noted that the use of attributes raises a few more problems to
lass �le veri�
ation. A simple 
ase is the presen
e of an unknown attributethat may safely be ignored. It is expli
itly stated that su
h a 
lass �le must notbe reje
ted. On the other hand, how should a veri�er rea
t if �for example� afield_info (see se
tion 2.1.3) stru
ture en
loses a Code_attribute? JustI
ewill issue a warning but not reje
t the 
lass �le.3.3 Pass ThreePerforming pass three basi
ally means verifying the byte
ode. There are so-
alled �stati
 
onstraints� on both the instru
tions in the 
ode array and theiroperands. There are also so-
alled �stru
tural 
onstraints�. The stru
tural 
on-straints spe
ify 
onstraints on relationships between JVM instru
tions, so somepeople (in
luding the author) regard �stru
tural 
onstraints� as a misnomer;they should be 
alled �dynami
 
onstraints�.Stati
 
onstraints are easily enfor
ed using very simple 
he
ks. Here is anexample for su
h a 
he
k: let there be a Code (see se
tion 2.1.1) attribute witha max_lo
als value of 2. Only lo
al variables number 0 and 1 may be a

essedby the byte
ode in this Code attribute. For all instru
tions a

essing lo
alvariables, make sure they do not a

ess any other lo
al variable.2Any number of line_number_table array entries �ts ni
ely in a singleLineNumberTable_attribute attribute. 31



3 Spe
i�
ation of the Veri�
ation PassesStru
tural 
onstraints are enfor
ed using an algorithm sket
hed by Sun; itimplements a symboli
 exe
ution of a method's 
ode, by means of data �owanalysis in
luding type inferen
e ([VMSPEC2℄, pages 143-151). This algorithmis 
alled the data �ow analyzer. It is intuitively easy to understand, but it is hardto prove its 
orre
tness. The reason for that is the very weak spe
i�
ation of itssubtleties; espe
ially subroutines, wide date types and obje
t initialization (seebelow). The general approa
h, however, is sound [BCV-Soundness℄. Here is anexample for a stru
tural 
onstraint enfor
ed by this algorithm: during programexe
ution, at any given point in the program the operand sta
k is always of thesame height, no matter whi
h 
ode path was taken to rea
h that point.Pass three is the 
ore of the veri�er. Note that we will split this pass up intotwo passes, namely a pass verifying the stati
 
onstraints and a pass verifyingthe stru
tural 
onstraints of a method's 
ode. We will 
all these passes �pass 3a�and �pass 3b�. In a way, they resemble pass one and pass two: the former pass
arefully parses an entity, while the latter pass performs additional veri�
ation.By de�ning pass four, the spe
i�
ation [VMSPEC2℄ impli
itly ex
ludes �
er-tain tests that 
ould in prin
iple be performed in Pass 3�, be
ause they are�delayed until the �rst time the 
ode for the method is a
tually invoked�. Onthe other hand, veri�ers are allowed to perform pass four partially or 
ompletelyas a part of pass three. JustI
e performs the pass four 
he
ks in pass 3a.3.3.1 Stati
 Constraints: Pass 3aSun gives examples of what the veri�er does before starting the data �ow ana-lyzer ([VMSPEC2℄, pages 143-144):
• Bran
hes must be within the bounds of the 
ode arrayfor the method.
• The targets of all 
ontrol-�ow instru
tions are ea
h thestart of an instru
tion. In the 
ase of a wide instru
tionthe wide op
ode is 
onsidered the start of the instru
-tion, and the op
ode giving the operation modi�ed bythat wide instru
tion is not 
onsidered to start an in-stru
tion. Bran
hes into the middle of an instru
tionare disallowed.
• No instru
tion 
an a

ess or modify a lo
al variable atan index greater than or equal to the number of lo
alvariables that its method indi
ates it allo
ates.
• All referen
es to the 
onstant pool must be an entryof the appropriate type. For example: the instru
tionld
 
an be used only for data of type int or �oat or forinstan
es of 
lass String; the instru
tion getfield mustreferen
e a �eld.
• The 
ode does not end in the middle of an instru
tion.
• Exe
ution 
annot fall o� the end of the 
ode.
• For ea
h ex
eption handler, the starting and endingpoint of the 
ode prote
ted by the handler must be at32



3.3 Pass Threethe beginning of an instru
tion or, in the 
ase of theending point, immediately past the end of the 
ode.The starting point must be before the ending point.The ex
eption handler 
ode must start at a valid in-stru
tion, and it may not start at an op
ode beingmodi�ed by the wide instru
tion.Most of these 
onstraints are either stati
 
onstraints on instru
tions or on theiroperands. A full list of 
onstraints 
an be found in the Java Virtual Ma
hineSpe
i�
ation, Se
ond Edition ([VMSPEC2℄, pages 133-137).The 
he
k for exe
ution falling o� the end of the 
ode is an ex
eption: thisis a stru
tural 
onstraint and should therefore be performed in pass 3b. Sun'sveri�ers, however, reje
t 
ode that has an unrea
hable nop at the end of the 
odearray. Obviously, they reje
t the 
ode before performing data �ow analysis. Forthe sake of 
ompatibility, JustI
e performs this 
he
k in pass 3a.Note that the JVM's instru
tions di�er in length. Some instru
tions o

upyonly one byte (su
h as nop), others o

upy three bytes (su
h as goto). Bran
hinstru
tions 
ould therefore target operands of instru
tions. For example, line 1of algorithm 3 reads �1: ifne #8�. If it would read �1: ifne #7�, this 
odewas malformed. A spe
ial 
ase is the instru
tion wide. This instru
tion takesanother instru
tion as its operand, so one 
ould be misguided into thinking thisembedded instru
tion was a valid target for bran
hes. It is not.The 
he
ks Sun delays until pass four are performed in pass 3a by JustI
e.These are 
he
ks to ensure allowed and possible a

ess to a referen
ed type,listed below.
• Is the type (
lass or interfa
e) 
urrently under examination allowed toreferen
e the type3?
• Does the referen
ed method or �eld exist in the given 
lass?
• Does the referen
ed method or �eld have the indi
ated des
riptor (signa-ture)?
• Does the method 
urrently under examination have a

ess to the refer-en
ed method or �eld?3.3.2 Stru
tural Constraints: Pass 3bThe stru
tural 
onstraints of JVM instru
tions are enfor
ed by a data �owanalyzer. This algorithm ensures the following 
onstraints ([VMSPEC2℄, page142).

• The operand sta
k is always the same size and 
ontainsthe same types of values.
• No lo
al variable is a

essed unless it is known to 
on-tain a value of an appropriate type.
• Methods are invoked with the appropriate arguments.3Interfa
es may 
ontain 
ode, this is normally used for stati
 initialization of final variables.33



3 Spe
i�
ation of the Veri�
ation Passes
• Fields are assigned only using values of appropriatetypes.
• All op
odes have appropriate type arguments on theoperand sta
k and in the lo
al variable array.A full list of stru
tural 
onstraints 
an be found in The Java Virtual Ma
hineSpe
i�
ation, Se
ond Edition ([VMSPEC2℄, pages 137-139).Sun's Veri�
ation AlgorithmSun spe
i�es the data �ow analyzer by giving an informal algorithm ([VMSPEC2℄,pages 144-146). This algorithm it 
ited here 
ompletely be
ause it is the very
ore of the veri�er. A

ording to this algorithm, every byte
ode instru
tion hasa �
hanged� bit. Initially, only the �
hanged� bit of the �rst instru
tion is set.1. Sele
t a virtual ma
hine instru
tion whose "
hanged"bit is set. If no instru
tion remains whose "
hanged"bit is set, the method has su

essfully been veri�ed.Otherwise, turn o� the "
hanged" bit of the sele
tedinstru
tion.2. Model the e�e
t of the instru
tion on the operandsta
k and lo
al variable array by doing the following:

• If the instru
tion uses values from the operand sta
k,ensure that there are a su�
ient number of values onthe sta
k and that the top values on the sta
k are ofan appropriate type. Otherwise, veri�
ation fails.
• If the instru
tion uses a lo
al variable, ensure thatthe spe
i�ed lo
al variable 
ontains a value of the ap-propriate type. Otherwise, veri�
ation fails.
• If the instru
tion pushes values onto the operandsta
k, ensure that there is su�
ient room on the operandsta
k for the new values. Add the indi
ated types tothe top of the modeled operand sta
k.
• If the instru
tion modi�es a lo
al variable, re
ordthat the lo
al variable now 
ontains the new type.3. Determine the instru
tions that 
an follow the 
urrentinstru
tion. Su

essor instru
tions 
an be one of thefollowing:
• The next instru
tion, if the 
urrent instru
tion isnot an un
onditional 
ontrol transfer instru
tion (forinstan
e goto, return, or athrow). Veri�
ation fails ifit is possible to "fall o�" the last instru
tion of themethod.
• The target(s) of a 
onditional or un
onditional bran
hor swit
h.
• Any ex
eption handlers for this instru
tion.4. Merge the state of the operand sta
k and lo
al vari-able array at the end of the exe
ution of the 
urrent34



3.3 Pass Threeinstru
tion into ea
h of the su

essor instru
tions. Inthe spe
ial 
ase of 
ontrol transfer to an ex
eption han-dler, the operand sta
k is set to 
ontain a single obje
tof the ex
eption type indi
ated by the ex
eption han-dler information.
• If this is the �rst time the su

essor instru
tion hasbeen visited, re
ord that the operand sta
k and lo
alvariable values 
al
ulated in steps 2 and 3 are the stateof the operand sta
k and lo
al variable array prior toexe
uting the su

essor instru
tion. Set the "
hanged"bit for the su

essor instru
tion.
• If the su

essor instru
tion has been seen before,merge the operand sta
k and lo
al variable values 
al-
ulated in steps 2 and 3 into the values already there.Set the "
hanged" bit if there is any modi�
ation tothe values.5. Continue at step 1.To merge two operand sta
ks, the number of values on ea
hsta
k must be identi
al. The types of values on the sta
ksmust also be identi
al, ex
ept that di�erently typed refer-en
e values may appear at 
orresponding pla
es on the twosta
ks. In this 
ase, the merged operand sta
k 
ontains areferen
e to an instan
e of the �rst 
ommon super
lass ofthe two types. Su
h a referen
e type always exists be
ausethe type Obje
t is a super
lass of all 
lass and interfa
etypes. If the operand sta
ks 
annot be merged, veri�
ationof the method fails.To merge two lo
al variable array states, 
orrespondingpairs of lo
al variables are 
ompared. If the two types arenot identi
al, then unless both 
ontain referen
e values, theveri�er re
ords that the lo
al variable 
ontains an unusablevalue. If both of the pair of lo
al variables 
ontain referen
evalues, the merged state 
ontains a referen
e to an instan
eof the �rst 
ommon super
lass of the two types.Certain instru
tions and data types 
ompli
ate the data �ow analyzer, mostnotably the instru
tion ret (see se
tion 2.2.2). The algorithm above even usesa spe
ial de�nition of merging for the ret instru
tion (see [VMSPEC2℄, page151). The ret instru
tion is parameterized with a value of type returnaddresswhi
h is read from a lo
al variable and used as a bran
hing target. The retinstru
tion is there to implement a (
ontrol �ow) return from a subroutine.Rea
hability of Instru
tionsFor the data �ow analysis algorithm, you need to know all the possible 
ontrol�ow su

essors of every instru
tion, i.e., you need to build a 
ontrol �ow graph35



3 Spe
i�
ation of the Veri�
ation Passes(see below). Without the instru
tions jsr4, jsr_w and ret this 
al
ulationwould be easy. But to 
al
ulate su

essors of a ret instru
tion, you need a
omplete 
ontrol �ow graph: you need to �nd out whi
h jsr or jsr_w and retpairs belong together. Therefore, a 
y
le of self-dependen
y is 
reated that hasto be broken somewhere. This is explained in detail below.This was also an issue that led to the de�nition of the term subroutine thatJustI
e uses. This de�nition allows the predi
tion of a ret instru
tion's targetwithout performing 
ontrol �ow analysis.SubroutinesSubroutines make the veri�
ation algorithm extremely di�
ult. They are harshlyunderspe
i�ed. Although �the Java virtual ma
hine has no guarantee that any�le it is asked to load was generated by that 
ompiler�, the subroutine spe
i�
a-tion explains how java
 transforms �try/
at
h/finally� 
lauses into subrou-tines [VMSPEC2℄. Intuitively, one gets the idea that a subroutine starts withsome jump target of a jsr or jsr_w instru
tion and ends with a ret instru
tion.But the spe
i�
ation fails to 
orre
tly spe
ify what subroutines exa
tly are atma
hine instru
tion level. Consider algorithm 4.Algorithm 4 Is This a Subroutine?00 jsr 03 ; Jump to �subroutine� at offset 03; push return; address 03 onto sta
k.03 pop ; Pop the return address off the sta
k.04 nop ; No operation.What is this? Is the NOP instru
tion part of a subroutine or not? Algorithm5 shows another example.Do we deal with one subroutine (whi
h is the 
ase if you de�ne subroutinesto start with a jsr or jsr_w's target) or are these two subroutines (whi
h is the
ase if you 
ount the ret instru
tions and believe that there must be exa
tlyone ret per subroutine)?Re
ursive 
alls to subroutines are forbidden by the spe
i�
ation; however,Sun's veri�er implementations are not 
onsequently de
iding whi
h re
ursive
alls to reje
t5. This is a failure due to a missing de�nition of the term subrou-tine.While the �rst example passes Sun's veri�er, the se
ond example is reje
ted.The exa
t de�nition of the term subroutine 
annot be dedu
ted from ther be-haviour of Sun's veri�er.A new, 
lean spe
i�
ation had to be de�ned. Su
h a spe
i�
ation 
an of
ourse not be 
ompatible with the behaviour of Sun's veri�er in all 
orner 
ases.4Remember, a jsr or jsr_w instru
tion is an un
onditional bran
h instru
tion that jumpsinto a subroutine. Usually a ret instru
tion leaves the subroutine.5This was experimentally found by the author and also published in [JBook℄.36



3.3 Pass ThreeAlgorithm 5 One or Two Subroutines?00 iload_0 ; Load a numeri
al 0 onto the sta
k.01 jsr 05 ; Jump to "subroutine" at offset 05; push return; address 04 onto sta
k.04 return ; Leave the method.05 dup ; Dupli
ate the sta
k's top.06 astore 0 ; Store the return address from the sta
k into; lo
al variable 0.07 astore 1 ; Store the return address from the sta
k into; lo
al variable 1.08 ifeq 12 ; If there is a 0 on top of the sta
k, jump to; offset 12.11 ret 0 ; Return to offset 4 (be
ause this is in lo
al; variable 0 here).12 nop ; No operation.13 ret 1 ; Return to offset 4 (be
ause this is in lo
al; variable 1 here).A Pre
ise De�nition of the Term SubroutineBe
ause Sun �inappropriately� des
ribes how java
 
reates subroutines, thede�nition presented here is based on the observation of java
's behaviour. Thismakes the de�nition 
ompatible with a lot of existing 
ode, but without violatingthe validity of far-rea
hing 
on
lusions earned by exploiting a 
lean de�nition6.
• Every instru
tion of a method is part of exa
tly one subroutine (or thetop-level).
• The �rst instru
tion of a subroutine is an astore N instru
tion that storesthe return address in lo
al variable number N.
• There must be exa
tly one ret instru
tion per subroutine. This instru
-tion must work on the lo
al variable N ; i.e., it is a ret N instru
tion.
• Subroutines are not prote
ted by ex
eption handlers.
• No instru
tion that is part of a subroutine is the target of an ex
eptionhandler.
• Subroutines of a subroutine do not a

ess lo
al variable N. A subsubroutineof a subroutine is also 
onsidered a subroutine here, in a re
ursive sense.As we 
an see, a subroutine 
an be 
hara
terized by its set of instru
tions, themost important instru
tion being the target of some jsr or jsr_w instru
tionthat is not part of the subroutine itself. Another important property is the lo
alvariable N the ret instru
tion is working on.6Unfortunately, in some rare 
ases, java
 produ
es 
ode that is in
ompatible with the 
on-straints related to our de�nition of subroutine. However, java
 also produ
es 
ode whi
his in
ompatible with Sun's veri�er (see se
tion 7.2.2). 37



3 Spe
i�
ation of the Veri�
ation PassesThis way, we 
an make sure subroutines are properly nested, so that JustI
ewould reje
t both the example byte
odes in algorithms 4 and 5.The astore instru
tion mentioned above is so important be
ause there isno JVM instru
tion that 
an read values of a returnaddress type from lo
alvariables. After entering a subroutine, the astore instru
tion pops the returnaddress o� the operand sta
k and writes it into lo
al variable number N. There-fore we 
an be sure it will not be dupli
ated or deleted as in algorithms 4 and5. The 
onstraints 
on
erning ex
eption handlers are de�ned to make sure thatwe 
an observe the 
ontrol �ow stati
ally. If an ex
eption is thrown from withina subroutine, the method simply �
ompletes abruptly� ([VMSPEC2℄, page 74).If we would allow subroutine instru
tions to be prote
ted by ex
eption handlers,it would not be 
lear if the handling instru
tions are part of the subroutine ornot.We 
an also derive subsubroutines of subroutines re
ursively by exploiting theproperly-nested property explained above.The Control Flow GraphA 
ontrol �ow graph is a dire
ted graph with edges that represent possiblebran
hes of 
ontrol �ow. Similarly, the nodes des
ribe groups of physi
allyadja
ent instru
tions that have to be exe
uted one after another � without anypossible 
ontrol �ow bran
h to another instru
tion but the physi
al su

essor7.Figure 3.1 shows su
h a 
ontrol �ow graph for algorithm 3, the implementationof the fa
ulty fun
tion dis
ussed earlier.

Figure 3.1: A Conventional Control Flow Graph7More information about 
ontrol �ow graphs 
an be found in [DragonBook℄.38



3.3 Pass ThreeThe JVM de�nes a sort of 
ontrol �ow orthogonal to the 
ommon exe
ution ofinstru
tions, namely, the ex
eption me
hanism. Be
ause every instru
tion 
ouldpossibly throw an ex
eption (say, a java.lang.VirtualMa
hineError) duringits exe
ution, the 
ontrol �ow graph 
al
ulated by JustI
e always uses only oneinstru
tion per node. This also re�e
ts the original veri�
ation algorithm givenby Sun Mi
rosystems. Figure 3.2 shows an example for su
h a 
ontrol �owgraph.

Figure 3.2: A Control Flow Graph as Used by JustI
eInstru
tion nodes are augmented with a data stru
ture that represents thesimulated operand sta
k and the simulated lo
al variables array. When run-ning the 
ore veri�
ation algorithm, these nodes are put into a queue whi
h isequivalent to tagging them with a 
hanged bit as Sun des
ribes8.Subroutines Revisited: Interplay With the Data Flow AnalyzerThere is another problem 
on
erning subroutines. Normally, when merging thetype information of two simulated lo
al variables, the 
ommon type is re
ordedas unusable if the types di�er. This unusable value is then propagated to sub-sequent instru
tions to prevent read a

ess.8As explained later, JustI
e uses a queue that allows dupli
ates: this is a slight semanti
al
hange. 39



3 Spe
i�
ation of the Veri�
ation PassesThis is not the 
ase with the su

essors of the ret instru
tion. These su

es-sors are physi
al su

essors of some jsr or jsr_w instru
tions.Subroutines are said to be polymorphi
 with respe
t to their lo
al variablesarrays. As an example, 
onsider algorithm 6. This algorithm shows legal JVM
ode. In line 11, lo
al variable 0 may 
ontain a value of the integer or the floattype; depending on the jsr instru
tion that entered the subroutine. Normally,this would 
ause the veri�er to mark lo
al variable 0 as unusable and propagatethis information. The su

essors of the ret instru
tion are the instru
tions inlines 5 and 10. However, a 
orre
t veri�er does not mark lo
al variable 0 asunusable for them, be
ause the lo
al variable 0 was not a

essed or modi�ed inthe subroutine.Algorithm 6 Lo
al Variables are Polymorphi
 in Subroutines0 : i
onst_0 ; load integer 
onstant 0 onto sta
k1 : istore 0 ; move it into lo
al variable 02 : jsr 11 ; enter subroutine5 : f
onst 0.0 ; load float 
onstant 0.0 onto sta
k6 : fstore 0 ; move it into lo
al variable 07 : jsr 11 ; enter subroutine again10: return ; 
omplete method11: astore 1 ; Subroutine entry: move return address; into lo
al variable 112: nop ; do nothing13: ret 1 ; return from subroutineBasi
ally, only the lo
al variables a

essed in the 
alled subroutine (and thesubroutines 
alled from there, re
ursively) are merged with the 
orrespondingsu

essor of a ret instru
tion. This means that in this spe
ial 
ase, three sour
esare used to 
onstru
t the merged array of lo
al variables type information (in-stead of only two): the jsr/jsr_w instru
tion, the ret instru
tion and the "old"type information of the ret instru
tion's target (whi
h is the physi
al su

essorof the jsr/jsr_w instru
tion).One possibility to deal with this situation is inlining. For instan
e, the veri�erof the Ele
tri
alFire JVM [EF℄ uses this approa
h: instru
tion nodes of subrou-tines are dupli
ated for every 
alling jsr or jsr_w instru
tion. This approa
his equivalent to the one sket
hed by Sun (see [VMSPEC2℄, page 151).JustI
e uses a variant of this approa
h: instru
tion nodes are augmented withsets of lo
al variables arrays. The lo
al variables array used for merging a ret'stype information with the physi
al su

essor of some jsr/jsr_w instru
tion iskeyed by that jsr/jsr_w instru
tion itself. This still implies a spe
ial mergingme
hanism for the ret instru
tion: only the physi
al su

essor of one jsr/jsr_winstru
tion 
an be merged with the ret at a time, be
ause other jsr/jsr_winstru
tions have possibly not been symboli
ally exe
uted yet and thus bear notype information at the time of merging. In this s
enario, an instru
tion ina subroutine plays multiple roles; one for ea
h o

uren
e of a jsr/jsr_w thatis 
alling the subroutine. The queue holding the instru
tions to symboli
allyexe
ute is therefore required to allow dupli
ates.40



3.4 Pass FourWide Data TypesThe types long and double use two 
onse
utive lo
al variables if written toor read from a lo
al variables array. Similarly, they use two operand sta
kslots. This makes type veri�
ation a bit more di�
ult be
ause of subtle spe
ial
ases. For example, when a method uses three lo
al variables at maximum (lo
alvariables 0, 1 and 2), the 
ode is not allowed to store a double value in lo
alvariable 2 (be
ause lo
al variable 3 would have to be o

upied, too).Instan
e Initialization and Newly Created Obje
tsIt would be di�
ult to verify that a newly 
reated instan
e is initialized exa
tlyon
e, given all possible paths of exe
ution �ow in a method. Fortunately (froma veri�er implementor's view), Sun puts 
onstraints on obje
t initialization thatmat
h the behaviour of the veri�er � instead of putting sane 
onstraints onobje
t initialization and a
tually verifying them.�A valid instru
tion sequen
e must not have an uninitialized obje
t on theoperand sta
k or in a lo
al variable during a ba
kwards bran
h [. . . ℄. Otherwise,a devious pie
e of 
ode might fool the veri�er into thinking it had initializeda 
lass instan
e when it had, in fa
t, initialized a 
lass instan
e 
reated in aprevious pass through a loop� ([VMSPEC2℄, page 148).3.4 Pass FourPass four performs �
ertain tests that 
ould in prin
iple be performed in Pass3� ([VMSPEC2℄, page 142). These tests are usually delayed by JVM implemen-tations until run-time, be
ause they possibly trigger the loading of referen
ed
lass �le de�nitions. This is a performan
e enhan
ement. However, �A Javavirtual ma
hine implementation is allowed to perform any or all of the Pass 4steps as part of Pass 3� ([VMSPEC2℄, page 143). The tests
• ensure that the referen
ed method or �eld exists in the given 
lass
• 
he
k that the referen
ed method or �eld has the indi
ated des
riptor(signature)
• 
he
k that the 
urrently exe
uting method has a

ess to the referen
edmethod or �eld.JustI
e has no run-time system and so the tests of pass four are performed inpass 3a.There are tests that have to be performed at run-time: for example, if anobje
t referen
ed by an obje
t referen
e on top of the operand sta
k implementsa 
ertain interfa
e or not [Fong2-WWW℄. These are not 
onsidered part of thepass four veri�
ation.
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4 Implementation of the Veri�
ationPassesO

asionally, the behaviour of other veri�er implementations was explained inse
tion 3. This is not a mistake; the Java Virtual Ma
hine Spe
i�
ation, Se
ondEdition [VMSPEC2℄ is unfortunately not detailed enough to make a 
lean-roomimplementation of the JVM veri�er possible. Having a 
lose look at the be-haviour of existing veri�er implementations is sometimes ne
essary to interpretthe spe
i�
ation 
orre
tly. For that reason, the behaviour of these implementa-tions is part of the spe
i�
ation of JustI
e whereever appropriate. Still, thereare some minor di�eren
es in behaviour between JustI
e and the traditionalJVM built-in veri�ers. These di�eren
es were observed by using the traditionalveri�ers, not by inspe
ting their sour
e 
ode.JustI
e is implemented in the Java programming language [langspe
2℄ usingthe Byte Code Engineering Library [BCEL-WWW, BCEL98℄.4.1 Pass OneThe Byte Code Engineering Library (BCEL) presents an obje
t oriented viewof the 
lass �le stru
ture. Therefore, an integral part of that library is parsing
lass �les. JustI
e uses the BCEL, so there was nothing left to do to loada 
lass �le in. Only minor 
hanges were made to the BCEL to make it moreverbose when ex
eptional situations o

ur; i.e., when a garbled 
lass �le is loadedin. The BCEL uses Java's ex
eption me
hanism to signal these situations;JustI
e transforms this behaviour into the behaviour expe
ted by users of theVeri�
ation API (see se
tion 5).Comparison to Sun's ImplementationThere does not seem to be any di�eren
e in behaviour between JustI
e and thetraditional veri�ers. Still, this 
onvi
tion is a result of bla
k box tests so itmight not be true in 
orner 
ases.Unknown attributes are ignored (though JustI
e re
ords a warning message,where the traditional veri�ers don't).Trailing bytes at the end of the 
lass �le are ignored in both versions, 
on-tradi
ting the spe
i�
ation. This was ne
essary be
ause some Java run-timeenvironments are broken 
on
erning the handling of .JAR ar
hive �les. Theme
hanism of loading 
lass �les from these ar
hives �les using the Java Plat-form's API is used by BCEL and probably by Sun's JVM, too. It is possiblethat this is the reason why Sun's veri�er itself does not enfor
e this 
onstraint.However, it does not really pose a threat to the integrity of any JVM known43



4 Implementation of the Veri�
ation Passesto the author. There is no entry in the ClassFile stru
ture (see se
tion 2.1)stating how long the 
lass �le is in its entirety, so a JVM implementor 
annotpossibly base a wrong de
ision on that.4.2 Pass TwoJustI
e does perform �all veri�
ation that 
an be performed without looking atthe byte
odes� in pass two. For some reasons (like determining a valid an
estorhierar
hy of a 
lass), pass two of JustI
e has to load referen
ed 
lasses. Of
ourse, this is done in a 
areful way: by pass-one-verifying them. If loading ofa referen
ed 
lass should fail (i.e., veri�
ation pass one fails on this 
lass), thereferen
ing 
lass is reje
ted by JustI
e's pass two. Pass two of JustI
e does notpass-two-verify any referen
ed 
lasses.Also, JustI
e's pass two emits a wealth of (warning) messages. Their target isto guide a byte
ode engineer to 
reate 
lass �les that are indistinguishable fromthose 
reated by Sun's java
 
ompiler with no debugging output. For exam-ple, the use of LineNumberTable attributes (see se
tion 2.1.1) is dis
ouraged,be
ause these atributes are only useful for debugging purposes. Still, they 
anbe the reason for a 
lass �le to be reje
ted � to be on the safe side, �nishedappli
ations for the JVM should not be shipped with this debug information.Most of the 
he
ks of pass two were implemented using the Visitor program-ming pattern [DesignPatterns℄ provided by the BCEL's de.fub.byte
ode.
lass�leAPI. This made it possible to have all the veri�
ation split into several methodswithout having to de�ne arti�
ial boundaries. For instan
e, a ConstantValueattribute is veri�ed in a method 
alled visitConstantValue(ConstantValue). Thisis a use of the obje
t oriented view of 
lass �les the BCEL o�ers.Comparison to Sun's ImplementationJustI
e does not distinguish between run-time or link-time be
ause it was notintended to implement a JVM. Therefore, the notion of resolving (see se
tion3.2) is useless for JustI
e. The author believes that the spe
i�
ation of pass twogiven by Sun 
losely re�e
ts their implementation (or the other way around)1.Sometimes, there are ambiguities in the spe
i�
ation. For instan
e, it issaid that �If the 
onstant pool of a 
lass or interfa
e refers to any 
lass orinterfa
e that is not a member of a pa
kage, its ClassFile stru
ture musthave exa
tly one InnerClasses attribute in its attributes table�. A 
lass orinterfa
e that is �not member of a pa
kage� is better known as a nested 
lassor inner 
lass [InnerSpe
℄, but this is something spe
i�
 to the Java language.The java
 
ompiler 
reates multiple, often funny-named2 
lass �les that areotherwise indistinguishable from normal 
lass �les.1The Java Virtual Ma
hine Spe
i�
ation, Se
ond Edition, began as an internal proje
t do
-umentation ([VMSPEC2℄, page xiv). Unfortunately, this 
an still be felt sometimes.2For anonymous 
lasses de�ned in a 
lass X the names are X$1, X$2 and so on. For a namedinner 
lass I de�ned in 
lass C the name is C$I. There is, however, no guarantee for that:this is only observed behaviour of java
. Please see se
tion 7.2.1 for an example how thisbehaviour 
an lead to unexpe
ted problems.44



4.3 Pass ThreeTherefore, it is generally not possible to de
ide if su
h an attribute is miss-ing; therefore Sun's implementation does not 
he
k this 
onstraint. JustI
e, in
ontrast, uses its warning me
hanism if the name of a referen
ed 
lass or inter-fa
e 
ould be a name of an inner 
lass 
reated by the java
 
ompiler and theInnerClass attribute is missing.The sets of a

epted or reje
ted 
lass �les 
on
erning pass two are equal usingboth Sun's implementation and JustI
e, as exhaustive tests show. This 
an,however, not be proven be
ause one would need to analyze Sun's sour
e 
odefor that (whi
h is not intended: as already mentioned, JustI
e is a 
lean-roomimplementation).4.3 Pass Three4.3.1 Pass 3aOne feature of the BCEL's de.fub.byte
ode.generi
 pa
kage is parsing 
ode at-tributes of methods and transforming them into so-
alled Instru
tionList ob-je
ts. Consequently, this feature is used to implement pass 3a; a few additional
he
ks have been implemented where BCEL is too �trustful� when parsing, i.e.,where BCEL relies on the 
orre
tness of the 
lass �le.Pass 3a 
onsists of the 
he
king of stati
 
onstraints on instru
tions and stati

onstraints on operands of these instru
tions. The su

essful 
reation an anInstru
tionList obje
t already implies that the stati
 
onstraints on instru
-tions are satis�ed. Similar to pass one, JustI
e transforms the behaviour ofBCEL's ex
eption me
hanism into the behaviour expe
ted by users of the Ver-i�
ation API (see se
tion 5).The de.fub.byte
ode.generi
 API provided by BCEL o�ers a Visitor designpattern similar to the one of the de.fub.byte
ode.
lass�le API. The tests forthe stati
 
onstraints on operands of instru
tions are implemented by using it.For example, the 
onstraints put on the operands of any iload instru
tion areveri�ed using a visitILOAD(ILOAD) method de�ned in a Visitor 
lass. ThisVisitor 
lass implements all the 
he
ks for integrity of all instru
tion's operands.Algorithm 7 shows the impementation of the visitILOAD(ILOAD) method.JustI
e does not provide any run-time, so the tests of pass four (see se
tion3.4) are not delayed until run-time, but performed here.Comparison to Sun's ImplementationSun does not distinguish pass 3a and pass 3b. However, Sun's veri�ers also haveto ensure that the stati
 
onstraints on instru
tions are satis�ed before startingdata �ow analysis.This is obvious be
ause a data stru
ture has to be built before the data �owanalyzer 
an be run; and this data stru
ture has to be built 
arefully3 be
ausepasses one and two did not look at the byte
odes before.JustI
e does implement pass four 
he
ks in pass 3a whi
h Sun's veri�ers donot. Be
ause JustI
e provides no run-time, the out
ome of a veri�
ation failure3This a
tually means verifying the stru
tural integrity of the byte
odes. 45



4 Implementation of the Veri�
ation PassesAlgorithm 7 visitILOAD, Visitor ensuring stati
 
onstraints on operands ofinstru
tions/** Che
ks if the 
onstraints of operands of the saidinstru
tion(s) are satisfied. */publi
 void visitILOAD(ILOAD o){int idx = o.getIndex();if (idx < 0){
onstraintViolated(o, "Index '"+idx+"' must benon-negative.");}else{int maxminus1 = max_lo
als()-1;if (idx > maxminus1){
onstraintViolated(o, "Index '"+idx+"' must not be greaterthan max_lo
als-1 '"+maxminus1+"'.");}}}is reported instantly. Traditional JVMs are required to silently delay the a
tionstriggered by that knowledge until run-time.4.3.2 Pass 3bJustI
e aims at implementing Sun's data �ow analyzing algorithm as 
loselyas possible. First, a 
ontrol �ow graph is built � whi
h implies analyzing amethod's subroutine 
alling stru
ture �rst.After that an implementation of the 
ore algorithm sket
hed by Sun Mi
rosys-tems is started. Veri�
ation failure is internally signalled by the Java ex
eptionhandling me
hanism whi
h is then transformed to mat
h the Veri�
ation API(see se
tion 5).SubroutinesSubroutines are modeled as instan
es of the Subroutine interfa
e. They pro-vide the following methods (note that an Instru
tionHandle is the BCEL'sprogramming handle to instru
tion obje
ts and that X[℄ is the 
ommon Javanotation for array of X ):
• boolean 
ontains(Instru
tionHandle)Returns true if and only if the given Instru
tionHandle refers to aninstru
tion that is part of this subroutine,
• Instru
tionHandle[℄ getInstru
tions()Returns all instru
tions that together form this subroutine,
• int[℄ getA

essedLo
alsIndi
es()Returns an array 
ontaining the indi
es of the lo
al variable slots a

essed46



4.3 Pass Threeby this subroutine (read-a

essed, write-a

essed or both); lo
al variablesreferen
ed by subroutines of this subroutine are not in
luded,
• int[℄ getRe
ursivelyA

essedLo
alsIndi
es()Returns an array 
ontaining the indi
es of the lo
al variable slots a

essedby this subroutine (read-a

essed, write-a

essed or both); lo
al variablesreferen
ed by subroutines of this subroutine are in
luded,
• Subroutine[℄ subSubs()Returns the subroutines that are dire
tly 
alled from this subroutine,
• Instru
tionHandle[℄ getEnteringJsrInstru
tions()Returns all the JsrInstru
tions that have the �rst instru
tion of this sub-routine as their target,
• Instru
tionHandle getLeavingRET()Returns the one and only RET that leaves the subroutine.Together with information from a simple analysis of the possible 
ontrol �owtransfer of all the other instru
tions but ret (see se
tion 3.3), a 
ontrol �owgraph is built.The Control Flow GraphThe 
ontrol �ow graph is a single instan
e with respe
t to a given method toverify. It is de�ned by providing a

ess to a set of 
ontexts of instru
tions.These are modeled as instan
es of the Instru
tionContext interfa
e.These instan
es en
lose Instru
tionHandle obje
ts (whi
h represent an in-stru
tion in the byte
ode), but they augment these obje
ts with type informa-tion (a set of Frames, see below) as needed by the data �ow analysis algorithm.Also, a method 
alled getSu

essors() is provided that 
al
ulates the possible
ontrol �ow su

essors of a given Instru
tionContext instan
e.The most notable method de�ned in the Instru
tionContext interfa
e is,however, the exe
ute(Frame, ArrayList, InstConstraintVisitor, Exe
utionVisi-tor) method. This method is used to symboli
ally exe
ute a given instru
tion.The ArrayList argument is there to re
ord the subroutine 
alling 
hain. Theproperly-nested property of JustI
e subroutines is exploited here: one 
an simply
ount jsr/jsr_w and ret instru
tions, similar to 
ounting opened and 
losedbra
es in mathemati
al expressions.A Frame is JustI
e's model of an exe
ution frame: a lo
al variables array modeltogether with an operand sta
k model. Every Instru
tionContext instan
e isaugmented with su
h a frame (to be pre
ise, a set of su
h frames as dis
ussedin the spe
i�
ation of subroutines, see se
tion 3.3).When frames are merged, the exe
ute(Frame, ArrayList, InstConstraintVisi-tor, Exe
utionVisitor) method of some su

essor Instru
tionContext is 
alled.The Frame argument represents is the 
urrent type information of the prede-
essing Instru
tionContext. 47



4 Implementation of the Veri�
ation PassesVisitorsAs in pass 3a, the Visitor pattern of the BCEL de.fub.byte
ode.generi
 API isalso used in pass 3b. While it was used to verify the stati
 
onstraints of passthree in pass 3a, it is now used to verify the stru
tural 
onstraints.Before an instru
tion X is symboli
ally exe
uted, the 
orresponding visitX(X)method is invoked on an InstConstraintVisitor instan
e. This instan
e isthere to verify all the pre
onditions are met to safely exe
ute the instru
tionX. The InstConstraintVisitor 
lass therefore holds information about thepre
onditions of all 212 valid Java byte
ode instru
tions. A simpli�ed versionof this Visitor's visitILOAD(ILOAD) method is listed in algorithm 8.Similarly, the Exe
utionVisitor 
lass 
ontains information about the be-haviour of every byte
ode instru
tion. An instan
e of this 
lass is used to modelthe e�e
t of the byte
ode instru
tions on a Frame instan
e. Algorithm 9 showsthe visitILOAD(ILOAD) method of this Visitor.Algorithm 8 visitILOAD, Visitor ensuring the stru
tural (dynami
) 
onstraintsof instru
tionspubli
 void visitILOAD(ILOAD o){int produ
e = o.produ
eSta
k(
pg);if ( produ
e + sta
k().slotsUsed() > sta
k().maxSta
k() ){
onstraintViolated(o, "Cannot produ
e "+produ
e+" sta
kslots: only "+(sta
k().maxSta
k()-sta
k().slotsUsed())+" freesta
k slot(s) left.\nSta
k:\n"+sta
k());}[...℄}Algorithm 9 visitILOAD, Visitor symboli
ally exe
uting instru
tions/** Symboli
ally exe
utes the 
orresponding Java Virtual Ma
hineinstru
tion. */publi
 void visitILOAD(ILOAD o){sta
k().push(Type.INT);}Comparison to Sun's ImplementationJustI
e was originally aimed to be as 
ompatible to Sun's implementation aspossible. However, the un
lear spe
i�
ation prevents 
lean room implementa-tions (i.e., implementations whose programmers did not look into Sun's 
ode)from perfe
t 
ompatibility.Fortunately, it JustI
e 
losely mat
hes Sun's implementation in its behaviour.As a test 
ase, the author veri�ed the transitive hull of the referen
ed 
lass �lesstarting with the de.fub.byte
ode.veri�er.Veri�er 
lass. This set in
ludes most ofthe 
lasses of the Java 2 API supplied by Sun Mi
rosystems, i.e., a few hundredsof apparently 
orre
t 
lasses. A very small number of 
lass �les was reje
ted by48



4.3 Pass ThreeAlgorithm 10 Simpli�ed Core Veri�
ation Algorithm of Pass 3bpubli
 Veri�
ationResult do_verify(Method m){ControlFlowGraph 
fg;if (m.hasCode())
fg = new ControlFlowGraph(m)elsereturn Good_Veri�
ationResult;Frame f = new Frame(); // lo
al variables and operand sta
kf.lo
alVariables().initialize(m.signature()); // put formal param types into lo
. varsInstConstraintVisitor i
v = new InstConstraintVisitor();Exe
utionVisitor ev = new Exe
utionVisitor();try{
ir
ulationPump(
fg, f, i
v, ev);}
at
h(Veri�
ationFailure){return Bad_Veri�
ationResult;}return Good_Veri�
ationResult;}publi
 void 
ir
ulationPump(Control�owGraph 
fg, Frame startFrame, In-stConstraintVisitor i
v, Exe
utionVisitor ev) throws Veri�
ationFailure{Instru
tion start = 
fg.getFirstInstru
tion();/*Now merge the �rst frame (type info) into the �rst instru
tion.Empty list -> no instru
tions have been exe
uted before.*/start.exe
ute(startFrame, EmptyInstru
tionList, i
v, ev);/*Q is a Queue of pairs (Instru
tion, Instru
tionList).*/Queue Q = EmptyQueue;/*Put the �rst instru
tion into the queue. This is similar to initializing a breadth �rstsear
h.*/Q.add (start, EmptyInstru
tionList);/*The main loop*/while (Q.isNotEmpty()){Instru
tion u = fst(Q.head());Instru
tionList e
 = snd(Q.head());Q.removeHead();Instru
tionList old
hain = e
;Instru
tionList new
hain = e
++[u℄;for (all su

essors v of u){/*exe
ute returns true if type info has 
hanged. It may throw Veri�
ationFailures.*/if (v.exe
ute(u.getOutFrame(old
hain), new
hain,i
v,ev))Q.add((v, new
hain));}} 49



4 Implementation of the Veri�
ation PassesJustI
e be
ause of its di�erent spe
i�
ation of subroutine 
onstraints. No otherreje
ts were en
ountered.Most 
lass �les that are found to be reje
ted by Sun's veri�er implementationsare reje
ted by JustI
e, too.However, there are 
lass �le reje
ted by Sun's veri�er implementations but notby JustI
e. This should not o

ur, but JustI
e does not mimi
 the programmingerrors of Sun's veri�ers so far. Please see se
tion 7.2.2 for a dis
ussion on asele
ted in
ompatibility issue.An automated testing suite 
ould solidify the trust in JustI
e's implementa-tion whi
h is not implemented yet. Please see se
tion 6.3.1 for a dis
ussion onthat topi
.4.4 Pass FourThe tests Sun's veri�ers perform during run-time but whi
h in prin
iple 
ouldbe performed in pass three are performed in pass 3a by JustI
e.Comparison to Sun's ImplementationIt sems natural that Sun's veri�er implements the spe
i�
ation by Sun. Ob-viously, JustI
e has no run-time so JustI
e has no pass four. The 
he
ks Sunperforms in pass four4 are performed in pass 3a by JustI
e.

4Some JVMs expose implementation mistakes 
on
erning pass four veri�
ation. See se
tion7.2.2.50



5 The Veri�
ation API5.1 Introdu
tionThe Appli
ation Programming Interfa
e (API) of JustI
e uses obje
t orienteddesign patterns [DesignPatterns℄. Readers not familiar with design patterns areen
ouraged to read at least about the Visitor, Singleton, Observer and Fa
torypatterns.JustI
e 
urrently 
onsists of four pa
kages: de.fub.byte
ode.veri�er, de.fub.byte
ode.veri�er.ex
, de.fub.byte
ode.veri�er.stati
s and de.fub.byte
ode.veri�er.stru
turals. (We shall from now on omit the pre
eding de.fub.byte
ode.) Themost important of them is the veri�er pa
kage. The 
lass VerifierFa
tory 
anbe found here; this is the pla
e where all veri�
ation starts. The VerifierFa
-tory 
reates Verifier instan
es; only the VerifierFa
tory 
an 
reate theseinstan
es. A Verifier instan
e, in turn, has a one-to-one relationship with a
lass �le to verify, �its 
lass�. You 
an instru
t a Verifier instan
e to run averi�
ation pass on its 
lass yielding a Verifi
ationResult.All 
lass �les are fet
hed from the BCEL's 
lass �le repository, i.e., the 
lassRepository. The 
lass �les stored there are either put there by the user or theyare read from the �le system. For a byte
ode engineer who uses the BCEL thisis 
onvenient, be
ause one does not have to save the dynami
ally 
reated 
lass�le �rst in order to load it into JustI
e.Pass 1 and pass 2 are related to the ClassFile stru
ture as su
h; passes 3aand 3b verify the byte
ode of a method. If a 
lass �le was 
reated using theBCEL, the BCEL user already knows how the JavaClass obje
t looks like1.The number of methods is known and the order of the methods in the 
lass �leis known.However, if this is not the 
ase, one usually does not know the number ofmethods in a 
lass �le or the order of these methods. To 
arefully extra
t thisinformation from an untrusted 
lass �le, one should �rst let a pass-2-veri�
ationrun on this �le. Afterwards, the information 
an be read from the JavaClassobje
t the BCEL o�ers.Finally, one is able to supply the �method index� needed by veri�
ation passes3a and 3b.Basi
ally, after pass 2 has been run su

essfully on a 
lass �le, one 
an safelyuse the methods in the BCEL's 
lass�le pa
kage on that 
lass �le. After pass3a has been run su

essfully on a method, one 
an safely work on that methodusing the BCEL's generi
 pa
kage. After pass 3b has been run su

essfully onall methods in a 
lass �le, this 
lass �le will not be reje
ted by other veri�ers.Often, the run of a veri�
ation pass implies re
ursively verifying other 
lass1A JavaClass obje
t represents a 
lass �le in the BCEL. 51



5 The Veri�
ation API�les as well (be
ause they are somehow referen
ed). Therefore, Veri�er in-stan
es for these referen
ed 
lasses are 
reated transparently. To be noti�edwhen su
h an event o

urs, one 
an implement the Veri�erFa
toryObserver in-terfa
e and let the Veri�erFa
tory register your implementation.

Figure 5.1: UML 
lass diagram of the Veri�
ation APIA Veri�er 
reates instan
es of PassVeri�ers. A PassVeri�er instan
e in 
hargeof performing some later veri�
ation pass transparently 
reates PassVeri�er in-stan
es for the pre
eding passes. Therefore, users of the Veri�
ation API donot have to 
are about the order of veri�
ation passes; i.e., earlier passes arerun always before later passes. All veri�
ation results are 
a
hed; this way anunsual order of 
alls to the doPassX() methods of the Veri�er 
lass does noteven waste 
omputing time.52



5.1 Introdu
tion
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Figure 5.2: Informal UML sequen
e diagram showing the dependen
y of veri�-
ation pass two on veri�
ation pass one.

53



5 The Veri�
ation API5.2 Some Example CodeThe 
ode below shows an example of how to use the API provided by JustI
e.It will verify the transitive hull of all referen
ed 
lass �les. Normally, whileverifying a 
lass, referen
ed 
lasses are re
ursively veri�ed performing earlierpasses. Veri�ers that are using pass 1 on their 
lass will not load in any other
lasses (see se
tion 3). Therefore, normally the transitive hull is not veri�ed
ompletely (it usually does not make sense to verify it, though � it's done hereonly to give an example of what 
an be done).01 pa
kage de.fub.byte
ode.verifier;02 import de.fub.byte
ode.verifier.*;03 import de.fub.byte
ode.
lassfile.*;04 import de.fub.byte
ode.*;05 /**06 * This 
lass has a main method implementing a demonstration program07 * of how to use the VerifierFa
toryObserver. It transitively verifies08 * all 
lass files en
ountered; this may take up a lot of time and,09 * more notably, memory.10 *11 * �author Enver Haase12 */13 publi
 
lass TransitiveHull implements VerifierFa
toryObserver{14 /** Used for indentation. */15 private int indent = 0;16 /** Not publi
ly instantiable. */17 private TransitiveHull(){ }1819 /* Implementing VerifierFa
toryObserver. */20 publi
 void update(String 
lassname){21 for (int i=0; i<indent; i++) {22 System.out.print(" ");23 }24 System.out.println(
lassname);25 indent += 1;26 Verifier v = VerifierFa
tory.getVerifier(
lassname);27 Verifi
ationResult vr;28 vr = v.doPass1();29 if (vr != Verifi
ationResult.VR_OK)30 System.out.println("Pass 1:\n"+vr);31 vr = v.doPass2();32 if (vr != Verifi
ationResult.VR_OK)33 System.out.println("Pass 2:\n"+vr);34 if (vr == Verifi
ationResult.VR_OK){35 JavaClass j
 = Repository.lookupClass(v.getClassName());36 for (int i=0; i<j
.getMethods().length; i++){37 vr = v.doPass3a(i);38 if (vr != Verifi
ationResult.VR_OK)39 System.out.println(v.getClassName()+", Pass 3a, method "+i+" ['"+j
.getMethods()[i℄+"'℄:\n"+vr);40 vr = v.doPass3b(i);41 if (vr != Verifi
ationResult.VR_OK)42 System.out.println(v.getClassName()+", Pass 3b, method "+54



5.2 Some Example Codei+" ['"+j
.getMethods()[i℄+"'℄:\n"+vr);43 }44 }45 indent -= 1;46 }4748 /**49 * This method implements a demonstration program50 * of how to use the VerifierFa
toryObserver. It transitively51 * verifies all 
lass files en
ountered; this may take up a52 * lot of time and, more notably, memory.53 */54 publi
 stati
 void main(String[℄ args){55 if (args.length != 1){56 System.out.println("Need exa
tly one argument: The root 
lassto verify.");57 System.exit(1);58 }59 int dot
lasspos = args[0℄.lastIndexOf(".
lass");60 if (dot
lasspos != -1)61 args[0℄ = args[0℄.substring(0,dot
lasspos); args[0℄ =args[0℄.repla
e('/', '.');62 TransitiveHull th = new TransitiveHull();63 VerifierFa
tory.atta
h(th);64 VerifierFa
tory.getVerifier(args[0℄); // the observer is 
alledba
k and does the a
tual tri
k.65 VerifierFa
tory.deta
h(th);66 }67 }First, an instan
e of the TransitiveHull 
lass is 
reated in line 62. Note that this
lass implements the Veri�erFa
toryObserver interfa
e.A referen
e to the newly 
reated instan
e is then passed to the Veri�erFa
tory in line63 by invoking its atta
h(Veri�erFa
toryObserver) method. After registering the newobserver, the Veri�erFa
tory will 
all the instan
e's update(String) method (de�ned inlines 20-46) whenever a new Veri�er instan
e is 
reated.To trigger the veri�
ation, a �rst Veri�er instan
e is fet
hed from the Veri�erFa
-tory . Be
ause it is the very �rst Veri�er instan
e that is fet
hed, we know that ithas to be newly 
reated. This is done in line 64. This instan
e is not used in themain(String[℄) method; but its 
reation leads to a invo
ation of the update(String)method whi
h is de�ned in lines 20-46.There, the name of the 
lass to verify is printed (lines 21-25, line 45) and thefour veri�
ation passes provided by JustI
e are run. Note that one has to be
areful not to try to verify a method that does not exist. JustI
e would in this
ase throw an InvalidMethodEx
eption. Therefore, after su

essfully verifyingthat the stru
ture of the 
lass �le to verify is well-formed (veri�
ation up toand in
luding pass two, lines 26-31), the number of methods is fet
hed from the
orresponding JavaClass obje
t. (It is ne
essary to perform veri�
ation passtwo on a 
lass �le to safely �nd out how many methods are de�ned in this 
lass�le.)After determining the number of methods, these methods are veri�ed per-55



5 The Veri�
ation APIforming passes 3a and 3b on them (lines 32-44).By applying all veri�
ation passes on some 
lass �le C, all 
lass �les refer-en
ed by C are found. Therefore, new Veri�er instan
es are 
reated whi
h areresponsible for them. Be
ause of that, the update(String) method des
ribedabove is 
alled for every referen
ed 
lass. This is a re
ursive loop; the programterminates when there is no referen
ed 
lass left to be veri�ed.The example above is simple yet powerful. Admittedly, it is of limited use toverify 
lasses provided by the JVM vendor; therefore one would not normallyverify all the transitive hull of referen
ed 
lass �les. However, a 
ommon use isverifying all 
lasses of a proje
t. Inserting a new line between line 20 and 21likeif (!(
lassname.startsWith(�de.fub.byte
ode.verifier�)) return;would easily a

omplish this goal if JustI
e itself is the proje
t to verify and allthe proje
t's 
lass �les are referen
ed by another 
lass �le in the proje
t.5.3 An Appli
ation PrototypeThe API of JustI
e is used to o�er byte
ode engineers an opportunity to 
reatetheir own appli
ation programs. However, this dimension of 
on�gurability isoften not needed.JustI
e 
omes with an appli
ation prototype whi
h provides an easy-to-useuser interfa
e. Figures 5.3 and 5.4 show s
reen shots of this prototype builton the JustI
e veri�er. The boxes to the right 
ontain veri�
ation information.From the top to the bottom the boxes represent the veri�
ation passes one, two,3a and 3b and the warning messages, respe
tively.
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5.3 An Appli
ation Prototype

Figure 5.3: Veri�
ation of the Mini.MiniParser 
lass �le. Veri�
ation is passed,but JustI
e suggests to remove unne
essary (debug information) at-tributes.
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5 The Veri�
ation API

Figure 5.4: Veri�
ation of the java.io.Obje
tInputStream 
lass �le. Veri�
ationis not passed be
ause of an unsatis�ed 
onstraint related to subrou-tines.
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6 Con
lusion6.1 What Was A
hievedAbout a third of the development time of JustI
e was spent examining the var-ious issues in 
onne
tion with subroutines, i.e., issues 
on
erning the byte
odeinstru
tions jsr, jsr_w and ret. This led to a new de�nition of the term sub-routine (se
tion 3.3.2)1, a new implementation of this veri�
ation area (se
tion4.3.2) and a dis
ussion on the arising in
ompatibilities (se
tions 4.3.2 and 7.2.2).Only a few di�erent veri�er implementations exist at all, and most of themare in
omplete. JustI
e is a 
omplete 
lass �le veri�er implementation in
ludinga byte
ode veri�er.The development of JustI
e also led to improvements of the Byte Code En-gineering Library [BCEL-WWW, BCEL98℄. For instan
e, the returnaddressdata type was introdu
ed there. It was modeled as a parameterized type. Also, aprogramming error was repaired that led to in
onsistent treatment of ex
eptionhandlers in the BCEL.The 
ontrol �ow graph used by JustI
e 
an also be used in other proje
ts;the Veri�
ation API provides a

ess to this data stru
ture2. Only be
ause ofthe 
lari�
ation of the subroutine issues 
ould su
h a data stru
ture be de�nedstati
ally.As an Open Sour
e proje
t, JustI
e provides algorithms whi
h may be re-used in own proje
ts. For example, every 
ompiler targeting the JVM has to
al
ulate the maximum amount of sta
k memory used by a method. This is alsodone by JustI
e.Finally, the need for a dis
ussion on the meaning of Java se
urity was iden-ti�ed (see se
tion 6.3.4).6.2 What Could Not Be A
hieved6.2.1 A Constraint DatabaseE�orts have been made to make JustI
e veri�er highly 
on�gurable. Unfor-tunately, this 
ould not be a

omplished by the author. For instan
e, it wasplanned to build a 
onstraint database whi
h would make it possible to turn onor o� single 
he
ks during veri�
ation.While this might be possible in some 
ases, in general the 
onstraints ofthe 
lass �le veri�er are highly intertwined. For instan
e, without a well-formed1A request for 
lari�
ation of the subroutine issue, sent to the ele
troni
 mail addressjvm�java.sun.
om was not answered.2A ControlFlowGraph instan
e 
an be 
reated by invoking the ControlFlowGraph(Method-Gen) 
onstru
tor. A MethodGen is the BCEL's representation of a method. 59



6 Con
lusion
onstant pool one 
ould not run the data �ow analyzer in a sane way. As anotherexample, if a user preferred not to 
are about sta
k under�ow the veri�
ationalgorithm would require 
ompli
ated user intera
tion; i.e., the user would haveto de
ide what type to put onto the simulated operand sta
k just before it isread.One 
ould model the interdependen
ies of the various 
onstraints and allowonly groups of 
he
ks to be turned on or o� together. However, the authordoubts this 
ould be done in a way that is not prone to errors and that 
an bevalidated easily.This is also the reason why only one error is reported if veri�
ation fails.Trying to 
ontinue veri�
ation and �nd more 
onstraint violations leads only to
onsequential veri�
ation errors.JustI
e implements 
a
hing of veri�
ation results. If a byte
ode engineerworks on a 
lass �le and needs to run JustI
e several times against it, JustI
ewill 
a
he the veri�
ation results of the re
ursively referen
ed 
lass �les. Be
auseof this, JustI
e will be fast every subsequent time it is used to verify the 
lass.This minimizes the impa
t of the above short
omings.6.2.2 A Perfe
t Veri�erJustI
e does not implement a perfe
t veri�er. Some 
lass �les with 
ode thatis safe to exe
ute are reje
ted. Unfortunately, there has to be some degree ofun
ertainty 
on
erning whi
h 
lass �les to reje
t.The JVM performs initialization of 
lass �les after loading and verifying themwithout error. This in
ludes running the 
ode in the spe
ial 
lass initializationmethod 
alled <
linit> if it exists (see [VMSPEC2℄, page 53). For the 
orre
toperation of the JVM it is important that this method does not 
ontain anin�nite loop. Verifying if this 
onstraint is true is similar to the Halting Problemand therefore not generally 
omputable [Unknowable℄. A veri�er has to omitthe 
he
k and pass potentially unsafe 
lass �les.For another example, 
onsider algorithm 11 below.Algorithm 11 Reje
ted 
lasspubli
 stati
 int always_true()Code(max_sta
k = 1, max_lo
als = 1, 
ode_length = 2)0: i
onst_1 ; push 
onstant 1 onto sta
k1: ireturn ; return 
onstant 1 (�true�)publi
 stati
 void good_method()0: invokestati
 NewClass0.always_true ()I (18); Push �true� on sta
k3: ifne #10 ; If �true� is on sta
k jump to 106: pop ; Pop a value off the sta
k7: goto #6 ; jump to 610:return ; 
omplete methodThis 
ode is harmless, be
ause lines 6 and 7 
an never be exe
uted (it would60



6.3 Future Workunder�ow the operand sta
k in an in�nite loop). A 
lass �le with this 
ode isreje
ted by JustI
e and other veri�ers, be
ause the endless loop seems to be amali
ious threat to the integrity of the JVM.We 
on
lude that there 
annot be a perfe
t veri�er. All that 
ould be done isredu
e the degree of un
ertainty. For pra
ti
al purposes, i.e., to be 
ompatiblewith Sun's implementation, one should not even do that.There is also a simple proof showing a perfe
t veri�er does not exist in [JNS℄,
hapter 6. It uses a diagonalization argument.6.3 Future WorkClass �le veri�
ation is an integral 
omponent of Java se
urity; and appli
ationprograms running on the Java Virtual Ma
hine are often used in se
urity 
riti
alareas. Several se
urity holes and �aws have been found both in implementationsand the spe
i�
ation of the Java 
lass �le veri�er sin
e it was introdu
ed.Re
ently, the area has experien
ed a leap as a theoreti
ally founded, soundand 
omplete Java environment was de�ned in [JBook℄. Possibly Sun's engineerswill use this work to improve Java and the Java veri�er. JustI
e will have to
hange to always keep 
lose to the industry standard.But JustI
e itself 
an also be improved 
on
erning pra
ti
ability, and newsoftware 
an be developed on top of the Veri�
ation API.6.3.1 Improvements to JustI
eIntrodu
tion of Unique Identifers for Veri�
ation Results and WarningMessagesCurrently, warning messages and veri�
ation results are 
on
eptually text-based.Only Veri�
ationResult obje
ts in
lude a numeri
 value whi
h programs 
an useto de
ide if some 
lass veri�
ation failed or not. A program like the prototypeintrodu
ed in se
tion 5.3 
an 
urrently not hide spe
i�
 messages from the userwithout parsing text. This limitation should be removed in the future by usingunique message numbers. This would also make translation of the messages intoother languages easier.A New Veri�
ation StrategyThe 
ore veri�
ation algorithm 
ited in se
tion 3.3.2 works by generalizing theknowledge about an obje
t type along the inheritan
e hierar
hy.For instan
e, let there be an obje
t of type java.util.Abstra
tList on thesimulated sta
k of some modeled instru
tion. Let there be a loop so that thealgorithm has to visit that same instru
tion again, this time with an obje
t oftype java.util.Abstra
tSet in that same sta
k slot. The veri�er will 
om-pute the meet of the two types and re
ord that there is some obje
t of typejava.util.Abstra
tColle
tion in that sta
k slot.Remember that the instru
tion will be marked with a 
hanged bit until nosu
h re-typing 
hange o

urs any more (JustI
e will a
tually put it into a queue).61



6 Con
lusionThis approa
h does not work very well when it 
omes to interfa
e types in-stead of 
lass �les. For example, the meet of a java.lang.Integer and ajava.lang.Double is a java.lang.Number be
ause java.lang.Number is the�rst 
ommon super 
lass. Both 
lasses also implement the java.lang.Com-parable interfa
e, but java.lang.Number does not. This information is lostwhen repla
ing the type information. However, 
urrent veri�ers do not reje
tthe 
lass �les but make additional run-time 
he
ks ne
essary.Fong noti
ed that this 
ould be the reason for the invokeinterfa
e op
odeto be underspe
i�ed [Fong2-WWW℄ (also see se
tion 7.2.1).Stärk et al. suggest the use of sets of referen
e types instead ([JBook℄, pages229-231). This 
ould also be implemented in JustI
e.Keeping up with Spe
i�
ation Clari�
ationsAs a 
lean-room implementation, JustI
e depends on the 
learness of the spe
-i�
ation. Ambiguities 
ould lead to programming errors.Here we give one example: methods 
an be inherited in Java (for example,the method 
lone() is de
lared in the java.lang.Obje
t 
lass and thereforeinherited by every other 
lass).Let a 
lass A be a sub
lass of java.lang.Obje
t and let 
lass B be a sub
lass ofA. Also, let 
lass B override the de�nition of 
lone() with an own implementation.If java
 
ompiles a Java program that invokes this method, it is either refer-en
ed as java.lang.Obje
t::
lone() or as B::
lone(). However, be
ause A inheritsthis method, the referen
e A::
lone() is legal, too.In The Java Virtual Ma
hine Spe
i�
ation, Se
ond Edition ([VMSPEC2℄,page 291) it is said that the referen
e must be a �symboli
 referen
e to the 
lassin whi
h the method is to be found�. Stati
ally, the method 
lone() 
an of 
oursenot be found in 
lass A. One 
ould therefore think the referen
e A::
lone() wasnot legal.In the meanwhile, Sun's engineer Gilad Bra
ha 
lari�ed this issue: �Of 
ourse.This is dis
ussed in JVMS 5.4.3.4, whi
h des
ribes interfa
e method resolution.I don't see the text on page 280 as 
ontradi
ting that. The symboli
 referen
edoes give an interfa
e in whi
h the required method 
an be found, albeit asan inherited member. We 
ould try and reword it in a more pre
ise way, toeliminate any misunderstandings.�Keeping up with 
lari�
ations like this is an inevitable and on-going part ofthe development of JustI
e.Keeping up with Java ExtensionsRe
ently, Sun Mi
rosystems introdu
ed a new attribute: the Sta
kMap attributewhi
h is an attribute lo
al to the Code attribute (see se
tion 2.1.1). It wasspe
i�ed in [J2ME-CLDCS℄.It is there to provide �limited devi
es� that perform a one-pass veri�
ationwith type information that would normally have to be inferred by the veri�er.It is not used by the veri�
ation algorithm of JustI
e now: it's 
urrently anunknown attribute to JustI
e.62



6.3 Future WorkDete
ting Lo
al Variable A

esses out of S
opeThe Lo
alVariableTable attribute is a debug information attribute. Basi
ally,it gives debuggers information about the original (sour
e 
ode) name and typeof a given lo
al variable.JustI
e builds data stru
tures to warn if it dete
ts 
ontradi
ting and overlap-ping areas; e.g., if some lo
al variable is anoun
ed to 
arry an int value and afloat value at the same time.It 
ould also be interesting to warn if a lo
al variable is a

essed for whi
h nodebug information exists. This is 
urrently not implemented.Extending the Veri�
ation APIJustI
e 
an easily be extended to run 
ertain analyses related to symboli
 byte-
ode exe
ution.This in
ludes the 
omputation of the maximum number of used operand sta
kslots in a method or the 
omputation of unused lo
al variables in a method.These analyses are normally 
ostly to implement3, but they are a waste prod-u
t of the veri�er's 
ore algorithm.A Veri�er Validation SuiteThe Kimera proje
t [Kimera-WWW℄ was the �rst known proje
t to implementa stand-alone Java veri�er. The people behind the proje
t had to test thebehaviour of their veri�er against the behaviour of the previous implementa-tions. Tests have been run in order to validate the Kimera veri�er. These testsrange from simply introdu
ing random one-byte errors into 
lass �les and au-tomati
ally running Kimera against other veri�ers to elaborate resear
h work[Kimera-ProdGram, Kimera-TestingJVM℄.Currently, JustI
e 
omes only with a very limited possibility of running test
ases against the native veri�er of the host ma
hine's JVM. The pioneering workof the Kimera proje
t 
ould be used to implement a validation suite for JustI
e.6.3.2 A Veri�er Prote
ting an IntranetOften, Java Virtual Ma
hines are built into software used to browse the WorldWide Web su
h as the KDE proje
t's Konqueror [KDE℄ or Mozilla.org's Mozilla[Mozilla℄ produ
ts. Su
h Internet te
hnology is also often used in 
orporatenetworks. Corporate networks based on internet te
hnology are 
alled intranets;these networks are normally prote
ted from the Internet by a so-
alled �rewall
omputer.This 
omputer's task is to provide a

ess to the internet only to privilegedemployees and �even more important� it blo
ks a

ess from unauthorized per-sons outside the intranet. The �rewall ma
hine is a single, bi-dire
tional pointof a

ess.3Often, heuristi
s are used su
h as the method MethodGen.getMaxSta
k() in the BCEL[BCEL-WWW, BCEL98℄. 63



6 Con
lusionHowever, normally web-browsing is 
onsidered harmless, so that the employ-ees 
an unrestri
tedly gather information, possibly visiting Java-enabled websites. The JVMs built into the browser software run software downloaded fromthe World Wide Web; while the the built-in veri�ers make sure that no danger-ous 
ode 
an be exe
uted.Let us assume someone dis
overed a se
urity hole in the veri�er implementa-tion or implementations that are used on the 
orporate network's workstations;let us also assume a pat
h exists that would �x the problem.A system administrator would have to spent a lot of time to repair every singleveri�er. A 
heaper solution would be a veri�er built into the �rewall ma
hine;su
h a veri�er 
an easily be implemented using JustI
e and its Veri�
ation API.6.3.3 A Java Virtual Ma
hine Implementation Using JustI
eThe Java veri�er is originally a part of the Java Virtual Ma
hine. JustI
e
ould also be part of a Java Virtual Ma
hine. JustI
e's 
lass �les (the program
ode JustI
e 
onsists of) 
ould simply be integrated into the 
ore Java 
lass�les. The exe
ution engine would then run JustI
e without a
tually verifyingJustI
e's 
lass �les themselves.For s
ienti�
 purposes one 
ould also implement a JVM in the Java pro-gramming language. Su
h an implementation 
ould, for example, serve as adebugger.6.3.4 Drawing a Clear Line Between the Prin
iple of InformationHiding and Se
urityThe prin
iple of information hiding has been (and still is!) a pra
ti
e of experi-en
ed programmers for many years. It is there to redu
e programming errors.In the Modula-2 programming language [M2℄ this is a
hieved by expli
itelydividing the program 
ode in de�nition modules and implementation modules.In older programming languages, su
h as in the C programming language [C℄,this prin
iple is impli
itely used, too. Basi
ally this is a
hieved by de�ninginterfa
es that only des
ribe what the 
ode of a program module does. Theseinterfa
e �headers� are in
luded into user 
ode instead of simply in
luding the
ode itself.In obje
t-oriented programming languages su
h as in Delphi [D3℄, C++ [CPP-D,CPP-E℄ or Java [langspe
2℄, this prin
iple is re�ned to what is 
alled obje
ten
apsulation. When a 
lass is de�ned, 
ertain key words su
h as private,prote
ted, friend, publi
, published set the a

ess rules for the members4of an obje
t of the given 
lass.Still, this re�ned te
hnique does not have anything to do with se
urity. It isonly there to aid programmers 
reate a reasonable design. If every pie
e of 
ode
ould manipulate every data stru
ture, one would not know where to look fora programming error in the program sour
e 
ode. On the other hand, if some�eld is private in C++, one 
ould (with some knowledge about the 
ompiler4The members of a 
lass are its 
omponents: methods (program 
ode) and �elds (also 
alledattributes or variables).64



6.3 Future Workused) still referen
e and modify this �eld by pointer manipulation. In additionto that, a se
ond program like a debugger 
ould wat
h even the data of private�elds.However, when a Java program is 
ompiled into the language of the JVM,the information about the a

ess rights of the �elds and methods is in
luded.This is where the prin
iple of information hiding is exploited to provide se
urity.For example, the veri�er of the JVM has to make sure private �elds are nevera

essed from a foreign pie
e of 
ode. But there are many implementationsof the JVM whi
h have se
urity �aws su
h as not honouring the a

ess rights.There are debuggers for JVM byte
odes, too.When one thinks about se
urity, one has to think of some enemy who 
ouldtry to harm the 
omputer or information stored on that 
omputer. From a JVMuser's point of view, the JVM is relatively se
ure. Even running untrusted 
ode
annot do mu
h harm. Be
ause the se
urity �aws in di�erent JVM implemen-tations di�er, they are probably not exploited most times.From a Java programmer's point of view, the JVM is not se
ure. Untrustedusers 
an do mu
h harm. For example, an online banking appli
ation storingimportant data in Java �elds (su
h as a

ess information to the bank's databasemanagement system) is a threat to both the bank and its 
ustomers. Thisinformation 
ould easily be extra
ted by a mali
ious user.Another problem for Java programmers is the amount of symboli
al informa-tion stored in 
lass �les. Today, it is easy to de-
ompile a Java 
lass �le ba
k toJava language sour
e 
ode [JODE-WWW℄. This sour
e 
ode 
an then be readand analyzed by the user. Fa
ing this problem, the �only safe 
ourse of a
tion isto assume that ALL Java 
ode will at some point be de
ompiled� ([JNS℄, page68).We 
on
lude that the prin
iple of information hiding is not enough to providea degree of se
urity that both �users and programmers� 
ould a

ept. Program-mers should not believe a good design makes a program se
ure.
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7 Appendix7.1 History of JustI
eThe author of JustI
e on
e started to implement a 
lass �le de
ompiler likeJode [JODE-WWW℄. It soon be
ame 
lear that to su

essfully implement it,one should exploit the �well-behaved� property of 
lass �les (whi
h essentiallymeans that they pass a veri�er, espe
ially pass three) [Krakatoa-WWW℄.JustI
e was then developed to understand the �well-behaved� property of usual
lass �les. It took mu
h longer to 
omplete than estimated be
ause of themany inherent bugs and ambiguities in The Java Virtual Ma
hine Spe
i�
ation,Se
ond Edition [VMSPEC2℄.Its name starts with a J like Java does, referring to the tradition of givingJava-related software su
h names. The se
ond part of the name, ICE, wasinspired by a novel by William Gibson [Neuroman
er℄. It is an a
ronym forIntrusion Countermeasures Ele
troni
s, something that is very mu
h like today's�rewall systems (see se
tion 6.3.2). He 
redits the invention of ICE to TomMaddox. The missing three letters were inserted to 
reate a word that makessense; in fa
t, 
hoosing the three-letter 
ombination ust resulted in the 
reationof a word with a double sense via bi-
apitalization.JustI
e was written using and extending the ex
ellent Byte Code EngineeringLibrary [BCEL-WWW, BCEL98℄ by Markus Dahm. It really helped a lot andsped up development time.It was also �last but not least� written to earn its author a German Dipl.-Inform. degree whi
h one may 
ompare to a master degree.7.2 Flaws and Ambiguities En
ounteredWhile designing, implementing and testing JustI
e, a lot of interesting �awsand ambiguities were found in the spe
i�
ation [VMSPEC2℄, the Java 
ompilerjava
 and the JVM java.7.2.1 Flaws in the Java Virtual Ma
hine Spe
i�
ationThe Java Virtual Ma
hine Spe
i�
ation, Se
ond Edition was derived from anin-house do
ument des
ribing the as-is implementation of Sun's genuine JavaVirtual Ma
hine ([VMSPEC2℄, page xiv). This sometimes leads to problems asthere are still a few points left where Sun's engineers forgot to des
ribe spe
i-�
ation details to the publi
, in error assuming they would be implementationdetails. Another sour
e of mistakes are ambiguities, inherent to natural lan-guages au
h as English. 67



7 AppendixA Code Length Maximum of 65535 Bytes per MethodOn page 152, The Java Virtual Ma
hine Spe
i�
ation, Se
ond Edition [VMSPEC2℄says that 
ode arrays may at most have a length of 65536 bytes be
ause 
ertainindi
es that point into the 
ode are only 16 bits of width. Page 134 states the
ode must have �less than� 65536 bytes. Therefore, the limitation stated onpage 152 is not helpful, but only 
onfusing.SubroutinesThe implementation of a provably 
orre
t veri�er is not possible be
ause ofthe ambiguities in the spe
i�
ation [VMSPEC2℄. To rea
h this goal, variouse�orts have been made to des
ribe the veri�er and the JVM formally [Qian,StataAbadi, FreundMit
hell, JBook, JPaper℄. By restri
ting the 
ode java
produ
es or by rede�ning the veri�er's behaviour, however, they are never one-to-one with the behaviour of the existing JVMs.Sun's spe
i�
ation does not de�ne the term subroutine although it is used. In-stead, it is explained what byte
ode the Java 
ompiler generates when a finally
lause appears in the Java language sour
e 
ode � this de�nitely does not belongthere, be
ause a veri�er must never assume the 
ode it veri�es was 
reated bySun's java
 
ompiler.Clarifying this issue 
ould lead to an o�
ial formal spe
i�
ation.The Spe
i�
ation Sometimes Satis�es the Veri�erFong [Fong2-WWW℄ found in 1997 that the invokeinterfa
e op
ode was un-derspe
i�ed in the �rst edition of the Java Virtual Ma
hine Spe
i�
ation. Hemanaged to 
reate a 
lass �le that did not implement a spe
i�
 interfa
e butnevertheless used invokeinterfa
e to invoke a method. This 
lass �le passedthe veri�er (up to pass three), but the JVM found the problem during run-time(pass four). Fong 
on
luded that the omission in the spe
i�
ation was done onpurpose be
ause the implementation of the data �ow analyzer does not allowto 
he
k this 
onstraint (please see se
tion 6.3.1 for a des
ription of how thislimitation 
ould be over
ome). However, in The Java Virtual Ma
hine Spe
i-�
ation, Se
ond Edition [VMSPEC2℄, the spe
i�
ation of invokeinterfa
e is
orre
ted.Still, there is another 
ase where one would suspe
t the spe
i�
ation de-s
ribes the behaviour of the veri�er: on pages 147 and 148 of the spe
i�
ation[VMSPEC2℄, veri�
ation of instan
e initialization methods and newly 
reatedobje
ts is explained. �A valid instru
tion sequen
e must not have an unini-tialized obje
t on the operand sta
k or in a lo
al variable during a ba
kwardsbran
h, or in a lo
al variable in 
ode prote
ted by an ex
eption handler or afinally 
lause�. Note that the Java language keyword finally does not reallybelong here (Sun should speak of subroutines), but more important is that thisspe
i�
ation is made to satisfy the veri�
ation algorithm: �Otherwise, a deviouspie
e of 
ode might fool the veri�er�.68



7.2 Flaws and Ambiguities En
ounteredThe '$' Chara
ter as a Valid Part of a Java NameBe
ause the java
 
ompiler may 
reate 
lass �les with a '$' 
hara
ter in theirnames as a result of Java sour
e �les de�ning inner 
lasses, this 
hara
ter shouldno longer be a valid part of a Java name to avoid problems. I.e., the method in-vo
ation java.lang.Chara
ter.isJavaIdenti�erPart('$'); should return the valuefalse.7.2.2 Flaws in the Implementation of the Java PlatformSun's Veri�er Reje
ts Code Produ
ed by Sun's CompilerSurprisingly, there are a number of examples in whi
h su
h a thing happens.Another Problem With Subroutines In [JPaper℄, Stärk and S
hmid give afew 
ode examples whi
h are 
ompiled 
orre
tly by the java
 
ompiler but theresulting 
ode is reje
ted by the traditional veri�ers. Algorithms 12 and 13 showone of their examples given in the Java programming language and the resultingoutput of the java
 
ompiler.Algorithm 12 Stärk and S
hmid's Reje
ted Class, Java Language Version
lass Test1{int test(boolean b){int i;try{if (b) return 1;i=2;}finally {if (b) i = 3;}return i;}} If one tries to run this byte
ode using a JVM by IBM Corporation, the 
odeis reje
ted1:ehaase�haneman:/home/ehaase > java Test1Ex
eption in thread "main" java.lang.VerifyError:(
lass: Test1, method: test signature: (Z)I)Lo
alvariable 2 
ontains wrong typeIn his le
tures, Stärk explains that the problem lies in the polymorphi
 na-ture of JVM subroutines [JLe
tures℄. Consider algorithm 13. In line 12, an intis put into lo
al variable number 2. The subroutine starting at line 27 is then
alled from line number 13. Note that this subroutine a

esses the lo
al vari-able number 2. Finally, line 16 transfers 
ontrol to line 37 where the veri�
ation1It is also reje
ted by Sun's JVMs and the Kimera veri�er [Kimera-WWW℄. 69
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Algorithm 13 Stärk and S
hmid's Reje
ted Class, JVM Byte
ode Versionint test(boolean arg1)Code(max_sta
k = 1, max_lo
als = 6, 
ode_length = 39)0: iload_11: ifeq #114: i
onst_15: istore_36: jsr #279: iload_310: ireturn11: i
onst_212: istore_213: jsr #2716: goto #3719: astore %421: jsr #2724: aload %426: athrow27: astore %529: iload_130: ifeq #3533: i
onst_334: istore_235: ret %537: iload_238: ireturn

70



7.2 Flaws and Ambiguities En
ounteredproblem o

urs. An int should be read from lo
al variable number 2, but thisis marked unusable, be
ause it was a

essed in the subroutine.However, the spe
i�
ation ([VMSPEC2℄, page 151) states:
• For any lo
al variable that [. . . ℄ has been a

essed or modi�ed by thesubroutine, use the type of the lo
al variable at the time of the ret.
• For any other lo
al variables, use the type of the lo
al variable before thejsr instru
tion.As one 
an see, in the above example lo
al variable number 2 holds an int datatype in both 
ases; there is no need to mark it unusable. This is the reasonwhy JustI
e does not reje
t the above byte
ode, thus being slightly in
ompatiblewith the behaviour of other veri�ers.The Maximum Method Length May Be Ex
eeded The java
 
ompiler Sunin
luded in the Java Development Kit version 1.3.0_01 does not 
he
k for themaximum method length of the 
ode array in a Code attribute (see se
tion2.1.1). A test �le 
ontaining 65000 lines like �System.out.println(�Test�);�was 
ompiled, but the resulting 
lass �le was reje
ted by the veri�er.IBM Corporation's jikes 
ompiler does not even generate 
ode, but it lo
ksup while 
ompiling the test �le.A Compiler Issue Related to Inner ClassesThe java
 
ompiler has to name 
lass �les, even those of so-
alled anonymous
lasses [InnerSpe
℄.This 
an 
ause problems: an inner 
lass I de�ned in a 
lass A will be 
ompiledinto a 
lass �le 
alled A$I.
lass. A Java 
lass named A$I will also be 
ompiledinto a 
lass �le named A$I.
lass overwriting the former 
lass �le. Be
ause Sundid not forbid the '$ ' 
hara
ter as a legal part of a Java identi�er, the java

ompiler should use a more sophisti
ated naming s
heme.Pass Four is Only Partially ImplementedPass four de�nes run-time tests for 
onstraints that 
ould also be veri�ed in passthree; it is only for performan
e reasons that these tests are delayed. Insteadof having all the tests in one pla
e, they are unne
essarily spread �making thevalidation of the veri�
ation algorithm itself extremely di�
ult� [Fong-WWW℄.Risking se
urity for better performan
e is often regarded as a bad de
ision. Forinstan
e, in thejava version "1.3.0_01"Java(TM) 2 Runtime Environment, Standard Edition (build 1.3.0_01)Java HotSpot(TM) Client VM (build 1.3.0_01, mixed mode)Java Virtual Ma
hine, the pass four 
he
k for a

ess rights was unintentionallyomitted. Sadly, other vendors li
ense Sun's 
ode and base their own implemen-tations on that 
ode. Therefore, mistakes are often inherited throughout theJVM vendors. The 71



7 Appendixjava version "1.3.0"Java(TM) 2 Runtime Environment, Standard Edition (build 1.3.0)Classi
 VM (build 1.3.0, J2RE 1.3.0 IBM build 
x130-20010626 (JITenabled: jit
))Java Virtual Ma
hine by IBM Corporation, for example, exposes the samemistake.7.3 Related Work7.3.1 The Kimera Proje
tIt is a misfortune that the Kimera [Kimera-WWW℄ proje
t 
losed the WorldWide Web presen
e and that the sour
e 
ode of the Kimera veri�er was neverreleased � it would have been quite interesting to see how that respe
ted veri�erimplementation deals with the problems arising 
on
erning subroutine veri�
a-tion.However, Kimera is the single other stand-alone veri�er besides JustI
e the au-thor knows of. The people behind the proje
t found important se
urity brea
hesin JVM implementations of various World Wide Web browsers.Also, they validated their veri�er implementation and published several pa-pers on JVM implementation veri�
ation [Kimera-ProdGram, Kimera-TestingJVM℄.7.3.2 The Veri�er by Stärk, S
hmid and BörgerIn [JBook℄, the authors de�ne the Java programming language and the Java vir-tual ma
hine formally using Abstra
t State Ma
hines (ASM). This also in
ludesthe veri�er; its spe
i�
ations have also been implemented in the fun
tional pro-gramming language AsmGofer [AsmGofer℄. This implementation is in
luded onthe CD-ROM that a

ompanies the book.The �JBook veri�er � does not implement a 
omplete 
lass �le veri�er. It
urrently only implements the byte
ode veri�
ation. Its input �les are not 
lass�les itself, but a textual representation of 
lass �les in so-
alled Jasmin format[JVM℄. Therefore, this implementation is merely of theoreti
al interest.It does, however, implement a byte
ode veri�er that is founded on a solidtheory. This theory 
ould be
ome the standard for the interpretation of theJVM spe
i�
ation [VMSPEC2℄. It 
ould even 
hange the spe
i�
ation to removeits ambiguities.There is also an unreleased version of this veri�er implemented in the Javaprogramming language using the BCEL. This implementation, if it should everbe released, promises a lot as it 
ould 
ombine usability and a solid theory.7.4 The GNU General Publi
 Li
enseGNU GENERAL PUBLIC LICENSEVersion 2, June 1991Copyright (C) 1989, 1991 Free Software Foundation, In
.59 Temple Pla
e, Suite 330, Boston, MA 02111-1307 USA72



7.4 The GNU General Publi
 Li
enseEveryone is permitted to 
opy and distribute verbatim 
opies of this li
ensedo
ument, but 
hanging it is not allowed.PreambleThe li
enses for most software are designed to take away your freedom toshare and 
hange it. By 
ontrast, the GNU General Publi
 Li
ense is intendedto guarantee your freedom to share and 
hange free software�to make sure thesoftware is free for all its users. This General Publi
 Li
ense applies to mostof the Free Software Foundation's software and to any other program whoseauthors 
ommit to using it. (Some other Free Software Foundation software is
overed by the GNU Library General Publi
 Li
ense instead.) You 
an applyit to your programs, too.When we speak of free software, we are referring tofreedom, not pri
e. Our General Publi
 Li
enses are designed to make sure thatyou have the freedom to distribute 
opies of free software (and 
harge for thisservi
e if you wish), that you re
eive sour
e 
ode or 
an get it if you want it,that you 
an 
hange the software or use pie
es of it in new free programs; andthat you know you 
an do these things.To prote
t your rights, we need to make restri
tions that forbid anyone todeny you these rights or to ask you to surrender the rights.These restri
tions translate to 
ertain responsibilities for you if you distribute
opies of the software, or if you modify it. For example, if you distribute 
opiesof su
h a program, whether gratis or for a fee, you must give the re
ipients allthe rights that you have. You must make sure that they, too, re
eive or 
anget the sour
e 
ode. And you must show them these terms so they know theirrights.We prote
t your rights with two steps:(1) 
opyright the software, and(2) o�er you this li
ense whi
h gives you legal permission to 
opy, distributeand/or modify the software.Also, for ea
h author's prote
tion and ours, we want to make 
ertain thateveryone understands that there is no warranty for this free software. If thesoftware is modi�ed by someone else and passed on, we want its re
ipients toknow that what they have is not the original, so that any problems introdu
edby others will not re�e
t on the original authors' reputations.Finally, any free program is threatened 
onstantly by software patents. Wewish to avoid the danger that redistributors of a free program will individuallyobtain patent li
enses, in e�e
t making the program proprietary. To preventthis, we have made it 
lear that any patent must be li
ensed for everyone's freeuse or not li
ensed at all.The pre
ise terms and 
onditions for 
opying, distribution and modi�
ationfollow.GNU GENERAL PUBLIC LICENSETERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MOD-IFICATION0. This Li
ense applies to any program or other work whi
h 
ontains a noti
epla
ed by the 
opyright holder saying it may be distributed under the terms ofthis General Publi
 Li
ense. The "Program", below, refers to any su
h programor work, and a "work based on the Program" means either the Program or73



7 Appendixany derivative work under 
opyright law: that is to say, a work 
ontainingthe Program or a portion of it, either verbatim or with modi�
ations and/ortranslated into another language. (Hereinafter, translation is in
luded withoutlimitation in the term "modi�
ation".) Ea
h li
ensee is addressed as "you".A
tivities other than 
opying, distribution and modi�
ation are not 
overed bythis Li
ense; they are outside its s
ope. The a
t of running the Program isnot restri
ted, and the output from the Program is 
overed only if its 
ontents
onstitute a work based on the Program (independent of having been made byrunning the Program). Whether that is true depends on what the Programdoes.1. You may 
opy and distribute verbatim 
opies of the Program's sour
e 
odeas you re
eive it, in any medium, provided that you 
onspi
uously and appro-priately publish on ea
h 
opy an appropriate 
opyright noti
e and dis
laimer ofwarranty; keep inta
t all the noti
es that refer to this Li
ense and to the absen
eof any warranty; and give any other re
ipients of the Program a 
opy of thisLi
ense along with the Program. You may 
harge a fee for the physi
al a
t oftransferring a 
opy, and you may at your option o�er warranty prote
tion inex
hange for a fee.2. You may modify your 
opy or 
opies of the Program or any portion ofit, thus forming a work based on the Program, and 
opy and distribute su
hmodi�
ations or work under the terms of Se
tion 1 above, provided that youalso meet all of these 
onditions:a) You must 
ause the modi�ed �les to 
arry prominent noti
es stating thatyou 
hanged the �les and the date of any 
hange.b) You must 
ause any work that you distribute or publish, that in whole or inpart 
ontains or is derived from the Program or any part thereof, to be li
ensedas a whole at no 
harge to all third parties under the terms of this Li
ense.
) If the modi�ed program normally reads 
ommands intera
tively when run,you must 
ause it, when started running for su
h intera
tive use in the mostordinary way, to print or display an announ
ement in
luding an appropriate
opyright noti
e and a noti
e that there is no warranty (or else, saying that youprovide a warranty) and that users may redistribute the program under these
onditions, and telling the user how to view a 
opy of this Li
ense. (Ex
ep-tion: if the Program itself is intera
tive but does not normally print su
h anannoun
ement, your work based on the Program is not required to print anannoun
ement.) These requirements apply to the modi�ed work as a whole. Ifidenti�able se
tions of that work are not derived from the Program, and 
an bereasonably 
onsidered independent and separate works in themselves, then thisLi
ense, and its terms, do not apply to those se
tions when you distribute themas separate works. But when you distribute the same se
tions as part of a wholewhi
h is a work based on the Program, the distribution of the whole must beon the terms of this Li
ense, whose permissions for other li
ensees extend to theentire whole, and thus to ea
h and every part regardless of who wrote it. Thus,it is not the intent of this se
tion to 
laim rights or 
ontest your rights to workwritten entirely by you; rather, the intent is to exer
ise the right to 
ontrol thedistribution of derivative or 
olle
tive works based on the Program. In addition,mere aggregation of another work not based on the Program with the Program74



7.4 The GNU General Publi
 Li
ense(or with a work based on the Program) on a volume of a storage or distributionmedium does not bring the other work under the s
ope of this Li
ense.3. You may 
opy and distribute the Program (or a work based on it, underSe
tion 2) in obje
t 
ode or exe
utable form under the terms of Se
tions 1 and2 above provided that you also do one of the following:a) A

ompany it with the 
omplete 
orresponding ma
hine-readable sour
e
ode, whi
h must be distributed under the terms of Se
tions 1 and 2 above ona medium 
ustomarily used for software inter
hange; or,b) A

ompany it with a written o�er, valid for at least three years, to giveany third party, for a 
harge no more than your 
ost of physi
ally perform-ing sour
e distribution, a 
omplete ma
hine-readable 
opy of the 
orrespondingsour
e 
ode, to be distributed under the terms of Se
tions 1 and 2 above on amedium 
ustomarily used for software inter
hange; or,
) A

ompany it with the information you re
eived as to the o�er to distribute
orresponding sour
e 
ode. (This alternative is allowed only for non
ommer
ialdistribution and only if you re
eived the program in obje
t 
ode or exe
utableform with su
h an o�er, in a

ord with Subse
tion b above.) The sour
e 
odefor a work means the preferred form of the work for making modi�
ations toit. For an exe
utable work, 
omplete sour
e 
ode means all the sour
e 
ode forall modules it 
ontains, plus any asso
iated interfa
e de�nition �les, plus thes
ripts used to 
ontrol 
ompilation and installation of the exe
utable. However,as a spe
ial ex
eption, the sour
e 
ode distributed need not in
lude anythingthat is normally distributed (in either sour
e or binary form) with the major
omponents (
ompiler, kernel, and so on) of the operating system on whi
hthe exe
utable runs, unless that 
omponent itself a

ompanies the exe
utable.If distribution of exe
utable or obje
t 
ode is made by o�ering a

ess to 
opyfrom a designated pla
e, then o�ering equivalent a

ess to 
opy the sour
e 
odefrom the same pla
e 
ounts as distribution of the sour
e 
ode, even though thirdparties are not 
ompelled to 
opy the sour
e along with the obje
t 
ode.4. You may not 
opy, modify, subli
ense, or distribute the Program ex
ept asexpressly provided under this Li
ense. Any attempt otherwise to 
opy, modify,subli
ense or distribute the Program is void, and will automati
ally terminateyour rights under this Li
ense. However, parties who have re
eived 
opies, orrights, from you under this Li
ense will not have their li
enses terminated solong as su
h parties remain in full 
omplian
e.5. You are not required to a

ept this Li
ense, sin
e you have not signedit. However, nothing else grants you permission to modify or distribute theProgram or its derivative works. These a
tions are prohibited by law if you donot a

ept this Li
ense. Therefore, by modifying or distributing the Program (orany work based on the Program), you indi
ate your a

eptan
e of this Li
enseto do so, and all its terms and 
onditions for 
opying, distributing or modifyingthe Program or works based on it.6. Ea
h time you redistribute the Program (or any work based on the Pro-gram), the re
ipient automati
ally re
eives a li
ense from the original li
ensor to
opy, distribute or modify the Program subje
t to these terms and 
onditions.You may not impose any further restri
tions on the re
ipients' exer
ise of therights granted herein. You are not responsible for enfor
ing 
omplian
e by third75



7 Appendixparties to this Li
ense.7. If, as a 
onsequen
e of a 
ourt judgment or allegation of patent infringementor for any other reason (not limited to patent issues), 
onditions are imposedon you (whether by 
ourt order, agreement or otherwise) that 
ontradi
t the
onditions of this Li
ense, they do not ex
use you from the 
onditions of thisLi
ense. If you 
annot distribute so as to satisfy simultaneously your obligationsunder this Li
ense and any other pertinent obligations, then as a 
onsequen
eyou may not distribute the Program at all. For example, if a patent li
ensewould not permit royalty-free redistribution of the Program by all those whore
eive 
opies dire
tly or indire
tly through you, then the only way you 
ouldsatisfy both it and this Li
ense would be to refrain entirely from distributionof the Program. If any portion of this se
tion is held invalid or unenfor
eableunder any parti
ular 
ir
umstan
e, the balan
e of the se
tion is intended toapply and the se
tion as a whole is intended to apply in other 
ir
umstan
es.It is not the purpose of this se
tion to indu
e you to infringe any patents orother property right 
laims or to 
ontest validity of any su
h 
laims; this se
tionhas the sole purpose of prote
ting the integrity of the free software distributionsystem, whi
h is implemented by publi
 li
ense pra
ti
es. Many people havemade generous 
ontributions to the wide range of software distributed throughthat system in relian
e on 
onsistent appli
ation of that system; it is up to theauthor/donor to de
ide if he or she is willing to distribute software through anyother system and a li
ensee 
annot impose that 
hoi
e. This se
tion is intendedto make thoroughly 
lear what is believed to be a 
onsequen
e of the rest of thisLi
ense.8. If the distribution and/or use of the Program is restri
ted in 
ertain 
oun-tries either by patents or by 
opyrighted interfa
es, the original 
opyright holderwho pla
es the Program under this Li
ense may add an expli
it geographi
aldistribution limitation ex
luding those 
ountries, so that distribution is permit-ted only in or among 
ountries not thus ex
luded. In su
h 
ase, this Li
ensein
orporates the limitation as if written in the body of this Li
ense.9. The Free Software Foundation may publish revised and/or new versionsof the General Publi
 Li
ense from time to time. Su
h new versions will besimilar in spirit to the present version, but may di�er in detail to address newproblems or 
on
erns. Ea
h version is given a distinguishing version number. Ifthe Program spe
i�es a version number of this Li
ense whi
h applies to it and"any later version", you have the option of following the terms and 
onditionseither of that version or of any later version published by the Free SoftwareFoundation. If the Program does not spe
ify a version number of this Li
ense,you may 
hoose any version ever published by the Free Software Foundation.10. If you wish to in
orporate parts of the Program into other free programswhose distribution 
onditions are di�erent, write to the author to ask for per-mission. For software whi
h is 
opyrighted by the Free Software Foundation,write to the Free Software Foundation; we sometimes make ex
eptions for this.Our de
ision will be guided by the two goals of preserving the free status ofall derivatives of our free software and of promoting the sharing and reuse ofsoftware generally.NO WARRANTY76



7.4 The GNU General Publi
 Li
ense11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THEREIS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMIT-TED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED INWRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PRO-VIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND,EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITEDTO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-NESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THEQUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.SHOULD THE PROGRAMPROVE DEFECTIVE, YOU ASSUME THE COSTOF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW ORAGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANYOTHER PARTYWHOMAYMODIFY AND/ORREDISTRIBUTE THE PRO-GRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUEN-TIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USETHE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATAORDATA BEING RENDERED INACCURATEOR LOSSES SUSTAINED BYYOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OP-ERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OROTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCHDAMAGES.END OF TERMS AND CONDITIONS
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GlossaryA

ess modi�ers In the Java programming language, the use of the keywordsprivate, prote
ted, publi
 (or the use of no keyword) de�nes the a

essrights for data or program 
ode (also 
alled visibility). This informationis also used by the JVM: it is part of the 
lass �les. The most importantmodi�er is private whi
h is used to globally deny a

ess to a �eld ormethod.A

ess rights A

ess rights are granted or denied by the use of ⊲a

ess modi-�ers.API Appli
ations Programming Interfa
e. Su
h an interfa
e is used to in
ludefun
tionality of foreign program modules (often Java ⊲pa
kages) into ownprograms.Debugger A program used to investigate the behaviour of another program.Often used to �nd and remove programming errors, so-
alled bugs.Des
riptor A symboli
 des
ription of type information. In the JVM's 
lass �les,strings in UTF-8 format [Uni
ode℄ are used to des
ribe type information.Field A member of a Java obje
t or 
lass, also 
alled variable or attribute.Method A member of a Java obje
t or 
lass. Methods in
lude program 
odeor they are abstra
t representatives for program 
ode. A method 
an be
ompared to a fun
tion in programming languages like C or Pas
al.Op
ode Operation Code. This denotes an instru
tion in an assembly-like 
om-puter language; to some people it means its binary representation.Pa
kage A pa
kage is an entity used in both the Java programming languageand the Java Virtual Ma
hine de�nition. It is used to group 
lasses thatin the eyes of the programmer belong together. Pa
kage de�nitions haveimpa
t on ⊲a

ess rights granted to other 
lasses.Signature A method has a (possibly empty) set of arguments it expe
ts, and ithas a return type (possibly the void type). The type information of thearguments and the return type together is 
alled signature. A signature
an be expressed in terms of a ⊲des
riptor.Type A �eld or a method argument has a type su
h as int or String. In theJVM's 
ontext, all values are typed. Types 
an be expressed in terms ofa ⊲des
riptor.
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